Skip to Content
  • Bureaux

    Bureaux

    Amérique du Nord et Amérique du Sud
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    Europe, Moyen-Orient et Afrique
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    Asie et Australie
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    Voir tous les bureaux
  • Alumni
  • Presse
  • S’abonner
  • Contacter
  • Canada | Français

    Sélectionnez votre région et votre langue

    Global
    • Global (English)
    Amérique du Nord et Amérique du Sud
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    Europe, Moyen-Orient et Afrique
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    Asie et Australie
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    Bookmark content that interests you and it will be saved here for you to read or share later.

    Explore Bain Insights
  • Expertises Sectorielles
    Menu principal

    Expertises Sectorielles

    • Aerospace et Défense
    • Agroalimentaire
    • Chimie
    • Infrastructures, BTP et Matériaux de Construction
    • Grande Consommation
    • Services Financiers
    • Santé
    • Engins & Equipements Industriels
    • Media et Divertissement
    • Metals
    • Mining
    • Pétrole & Gaz
    • Papier et Emballage
    • Private Equity
    • Secteur Public
    • Distribution
    • Technologie
    • Télécommunications
    • Transportation
    • Travel & Leisure
    • Utilities & Energies Renouvelables
  • Expertises Fonctionnelles
    Menu principal

    Expertises Fonctionnelles

    • Expérience Client
    • ESG
    • Innovation
    • Fusions et Acquisitions
    • Opérations
    • People & Organization
    • Private Equity
    • Sales & Marketing
    • Stratégie
    • IA, Perspectives et Solutions
    • Technology
    • Transformation
  • Digital
  • Points de Vue
  • About
    Menu principal

    About

    • Notre Activité
    • Nos Valeurs
    • Nos Collaborateurs et Notre Équipe Dirigeante
    • Notre Impact
    • Prix & Récompenses
    • Partenariats Internationaux
    Further: Our global responsibility
    • Sustainability
    • Impact Social
    • World Economic Forum
    Learn more about Further
  • Carrières
    Menu principal

    Carrières

    • Rejoignez-nous
      Carrières
      Rejoignez-nous
      • Find Your Place
      • Nos domaines d’expertise
      • Equipes multidisciplinaires
      • Étudiants
      • Stages et programmes
      • Événements de recrutement
    • La vie chez Bain
      Carrières
      La vie chez Bain
      • Blog: Inside Bain
      • Récits de carrière
      • Nos collaborateurs
      • Nos bureaux
      • Soutenir votre évolution professionnelle
      • Groupes d’affinités
      • Avantages chez Bain
    • Histoires d’impact
    • Notre processus de recrutement
      Carrières
      Notre processus de recrutement
      • Ce que vous pouvez attendre
      • Entretiens
    Trouver un poste
  • Bureaux
    Menu principal

    Bureaux

    • Amérique du Nord et Amérique du Sud
      Bureaux
      Amérique du Nord et Amérique du Sud
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • Europe, Moyen-Orient et Afrique
      Bureaux
      Europe, Moyen-Orient et Afrique
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • Asie et Australie
      Bureaux
      Asie et Australie
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    Voir tous les bureaux
  • Alumni
  • Presse
  • S’abonner
  • Contacter
  • Canada | Français
    Menu principal

    Sélectionnez votre région et votre langue

    • Global
      Sélectionnez votre région et votre langue
      Global
      • Global (English)
    • Amérique du Nord et Amérique du Sud
      Sélectionnez votre région et votre langue
      Amérique du Nord et Amérique du Sud
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • Europe, Moyen-Orient et Afrique
      Sélectionnez votre région et votre langue
      Europe, Moyen-Orient et Afrique
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • Asie et Australie
      Sélectionnez votre région et votre langue
      Asie et Australie
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    Menu principal
    Saved items (0)

    You have no saved items.

    Bookmark content that interests you and it will be saved here for you to read or share later.

    Explore Bain Insights
  • Expertises Sectorielles
    • Expertises Sectorielles

      • Aerospace et Défense
      • Agroalimentaire
      • Chimie
      • Infrastructures, BTP et Matériaux de Construction
      • Grande Consommation
      • Services Financiers
      • Santé
      • Engins & Equipements Industriels
      • Media et Divertissement
      • Metals
      • Mining
      • Pétrole & Gaz
      • Papier et Emballage
      • Private Equity
      • Secteur Public
      • Distribution
      • Technologie
      • Télécommunications
      • Transportation
      • Travel & Leisure
      • Utilities & Energies Renouvelables
  • Expertises Fonctionnelles
    • Expertises Fonctionnelles

      • Expérience Client
      • ESG
      • Innovation
      • Fusions et Acquisitions
      • Opérations
      • People & Organization
      • Private Equity
      • Sales & Marketing
      • Stratégie
      • IA, Perspectives et Solutions
      • Technology
      • Transformation
  • Digital
  • Points de Vue
  • Carrières
    Recherches les plus fréquentes
    • Agile
    • Digital
    • Stratégie
    Vos recherches précédentes
      Pages récemment visitées

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      Rolling Out Multiarmed Bandits for Fast, Adaptive Experimentation

      Rolling Out Multiarmed Bandits for Fast, Adaptive Experimentation

      How to outperform conventional A/B testing when scaling up personalized messages and services.

      Par Joshua Mabry, Janani Sriram, et Richard Lichtenstein

      • min
      }

      Article

      Rolling Out Multiarmed Bandits for Fast, Adaptive Experimentation
      en
      En Bref
      • Marketing teams often lack the ability to quickly run in-market tests and scale them up.
      • Traditional A/B testing and even multivariate testing fall short for marketing that has frequent customer touches.
      • Multiarmed bandits, by contrast, dynamically steer traffic toward winning marketing messages, decreasing the cost of testing due to lost conversions.
      • Pricing experiments are a particularly useful application since retailers must balance the need for a demand model that informs long-term profits without compromising immediate profits.

      With third-party cookies on the wane, marketers rely increasingly on first-party data. Most retailers are investing heavily in platforms to capture and unify their customer data. Across the board, they have been reaping value from triggered campaigns, with simple purposes such as reminding customers to return to their abandoned carts or to consider relevant product assortments.

      Now, there’s a broader opportunity—namely, to use artificial intelligence (AI) to segment customers and automatically orchestrate aspects of their customer experience, ranging from marketing messages to retention interventions. Yet while many companies talk about creating a deeply personalized experience, few have made good use of AI.

      Worse, many have invested in advanced marketing technology stacks, but they cannot take advantage of the personalization capabilities advertised by platform providers. The main constraint: Marketing teams often lack the ability to quickly run in-market tests and scale up these systems through automation.

      Enter the multiarmed bandit

      We attribute the testing bottleneck to a reliance on traditional A/B testing approaches. These tend to be highly manual to set up, implement, and interpret. Moreover, the insights generated may be ephemeral because of shifting consumer preferences and underlying seasonality in many markets. Companies that send daily messages to customers see steep decay curves as even the highest-performing messages lose effectiveness by the third time someone sees them.

      Moreover, multivariate testing (MVT), which is a more powerful approach that can test many variables at once, also suffers from this flaw as the huge lift that it generates erodes with frequent customer touches. MVT can, however, work well for marketing touches that occur infrequently for an individual consumer, such as a subscription.

      Marketers can gain greater value by adopting adaptive experimentation approaches that more efficiently optimize customer engagement or financial metrics. These highly automated and always-on tools dynamically steer traffic toward winning marketing messages, decreasing the cost of testing caused by lost conversions. We have seen retailers realize double-digit sales increases by setting their ambitions higher and by automating the testing process using these advanced approaches. One of the most effective algorithms is the multiarmed bandit (MAB), which can be applied to use cases ranging from offer optimization to dynamic pricing. Because the MAB is always optimizing, we see persistent lift even for daily customer contacts (see Figure 1).

      Figure 1
      Multiarmed bandit has several benefits over traditional A/B or multivariate testing
      Multiarmed bandit has several benefits over traditional A/B or multivariate testing
      Multiarmed bandit has several benefits over traditional A/B or multivariate testing

      MABs provide a simple, robust solution for sequential decision making during periods of uncertainty. To build an intelligent and automated campaign, a marketer begins with a set of actions (such as which coupons to deliver) and then selects an objective (such as maximizing clickthrough rates or EBITDA for email marketing). The algorithm balances exploration (gathering more data on new actions) with exploitation (selecting actions that perform well). The goal here is to select actions that maximize the payoff and quickly converge on the best set of actions. As market conditions change, the campaigns can easily be reset to discover new winners, or in more sophisticated designs, they can be configured to continue the testing cycle indefinitely.

      Pricing experiments are a particularly useful application since retailers must balance the need for a demand model that informs long-term profits without compromising immediate profits. They thus “earn while learning” through in-market tests rather than “learn then earn.” As with any learning algorithm, it is important to be thoughtful about objective functions. For instance, an objective tied to revenue rather than profit may lead the MAB to converge on a solution with excessive discounting if the algorithm decides that deep discounts are a great way to increase revenue.

      Online service applications

      Companies often use bandit solutions to speed up experimentation and personalize the experience for users of online services. Such solutions share a few characteristics:

      • They make several actions, such as unique ads or email messages, available for different users.
      • Marketers can quickly track user response to the action.
      • Marketers can easily adapt the online system, such as when recommending a different product, at a low cost.

      In their most basic form, MABs serve as a more efficient alternative to A/B testing, adaptively allocating traffic to find a winning version of a website, email, advertisement, or other marketing action. In most digital systems, each user interaction also gathers some side information about the user and the action, known as the context. This might be information about the user’s current circumstance (cohort, location, time of day) or historically computed information (past spending, age, gender, shopping history). Contextual bandits extend the MAB framework and learn how to use this additional information to make decisions that optimize a target metric, such as profits or clickthrough rate.

      Personalization with contextual bandits

      Leading digital organizations implement contextual bandits for core services, such as promotional offer selection, in which it’s important to personalize the experience and adjust to fast-changing market conditions. The leaders also generate a steady stream of innovative content to test: new creative, imagery, promotions, and products. Constantly feeding the bandit with new ideas to test helps to avoid getting stuck with less-than-optimal results and generates new insights into customer behavior. Also, because bad ideas fail fast while winners rise to the top, companies can take bigger risks with their marketing ideas than they could in a slower-moving test cycle.

      There are a few signals that a company is ready for more advanced approaches such as a contextual bandit:

      • a robust and fast-moving experimentation program;
      • customer data that can be accurately matched to historical marketing and transactional records; and
      • product-focused teams that can optimize high-value customer touchpoints.

      Taking on the complexity of a bandit makes sense for an organization already running tests at scale, and the traditional testing generates valuable digital exhaust that can be fed into the bandit algorithm. One typically trains a contextual bandit on logged data stored in a data warehouse or other analytical data storage. Here, a company needs records of marketing actions served (such as which coupon was sent) and the resulting reward metric at the individual customer level, as well as metadata describing both the action and the user history at the time of campaign execution.

      With data in hand, a bandit model can be trained on any modern machine learning (ML) platform with model training, versioning, and serving capabilities. Usually, the value is established by building a minimum viable product algorithm operating on batches of data at a cadence that allows for careful validation by data science teams before being put into production. Personalized marketing messages can be served through web, email, or application-specific channels, and often there is some application programming interface (API) development work required to integrate the ML models with these channels. Luckily, most of the channel-specific tools include personalization APIs, which populate the personalized content within a message template, so these integration tasks are relatively straightforward.

      As with any ML/AI system, continuous monitoring and ongoing maintenance remain important, so these systems are most effective in the hands of stable, product-focused marketing teams. Looking ahead, we expect to see broader adoption of AI and adaptive experimentation techniques, from which marketers can more effectively learn and activate first-party customer data.

      Auteurs
      • Headshot of Joshua Mabry
        Joshua Mabry
        Alumni, Silicon Valley
      • Janani Sriram
        Alumni, Bengaluru
      • Headshot of Richard Lichtenstein
        Richard Lichtenstein
        Alumni, New York
      Contactez-nous
      Expertises fonctionnelles transverses
      • Digital
      • IA, Perspectives et Solutions
      Le Point de Vue d’un Expert en Advanced Analytic
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      Voir plus
      IA, Perspectives et Solutions
      Retailers Have a Secret Weapon in AI-Powered Shopping: Trust

      US consumers would be more comfortable with AI buying on their behalf if a familiar retailer were involved.

      Voir plus
      Le Point de Vue d’un Expert en Advanced Analytic
      Making Friends with Collinearity: How Driver Interactions Can Inform Targeted Interventions

      Driver analysis helps inform decisions on which drivers deserve the greatest effort.

      Voir plus
      IA, Perspectives et Solutions
      Four Ways Leaders Can Make AI Redesigns Stick

      As companies redesign to scale AI, these four lessons help leaders ensure their organizations actually live the new operating model.

      Voir plus
      Le Point de Vue d’un Expert en Advanced Analytic
      Mission Possible: Driver Analysis with Collinear Variables

      Many commonly used methods have serious limitations when assessing the variable importance of collinear drivers.

      Voir plus
      First published in septembre 2021
      Mots clés
      • Digital
      • IA, Perspectives et Solutions
      • Le Point de Vue d’un Expert en Advanced Analytic

      Comment nous avons aidé nos clients

      A New Demand Forecasting Approach Signals a Bottom-Line Boost

      Lire l’étude de cas

      Blockchain-enabled Payment Flows: A Payments Company Reviews its Strategy

      Lire l’étude de cas

      Better Forecasts, Less Waste Boost Grupo Bimbo’s Profitability

      Lire l’étude de cas

      Vous souhaitez continuer cette conversation ?

      Nous aidons des dirigeants du monde entier à matérialiser des impacts et des résultats pérennes et créateurs de valeur dans leurs organisations.

      Les points de vue de Bain : notre perspective sur des problématiques auxquelles sont confrontées les entreprises à travers le monde, envoyés chaque mois dans votre boîte de réception. 

      *J’ai lu la politique de confidentialité et j’accepte les conditions.

      Merci de lire notre politique de confidentialité.
      Bain & Company
      Contactez-nous Sustainability Accessibility Conditions d’utilisation Politique de Confidentialité Cookie Policy Mentions Légales Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      Contacter Bain

      Comment pouvons-nous vous aider ?

      • Business inquiry
      • Career information
      • Press relations
      • Partnership request
      • Speaker request
      Voir tous les bureaux