Skip to Content
  • Offices

    Offices

    North & Latin America
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    Europe & Africa
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    Middle East
    • Doha
    • Dubai
    • Riyadh
    Asia & Australia
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    See all offices
  • Alumni
  • Media Center
  • Subscribe
  • Contact
  • Argentina | Español

    Select your region and language

    Global
    • Global (English)
    North & Latin America
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    Europe, Middle East, & Africa
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    Asia & Australia
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    Bookmark content that interests you and it will be saved here for you to read or share later.

    Explore Bain Insights
  • Industries
    Main menu

    Industries

    • Aeroespacial y Defensa
    • Agroindustria
    • Químicos
    • Construcción e Infraestructura
    • Productos de Consumo
    • Servicios Financieros
    • Salud y Ciencias de la Vida
    • Maquinaria y Equipo Industrial
    • Medios y Entretenimiento
      Industries
      Medios y Entretenimiento
      • Media Lab
    • Metales
    • Minería
    • Petróleo y Gas
    • Papel y Empaque
    • Private Equity
      Industries
      Private Equity
      • Due Diligence
      • Exit Planning
      • Firm Strategy & Operations
      • Portfolio Value Creation
    • Sector Público y Social
    • Retail
    • Tecnología
    • Telecomunicaciones
      Industries
      Telecomunicaciones
      • Capital Expenditure
      • Telco Digital Transformation
    • Transporte
    • Viajes y Turismo
    • Servicios Públicos y Energías Renovables
  • Consulting Services
    Main menu

    Consulting Services

    • Customer Experience
    • Sustainability
    • Innovation
    • M&A
    • Operations
    • People & Organization
    • Private Equity
    • Sales & Marketing
    • Strategy
    • AI, Insights, and Solutions
    • Technology
    • Transformation
  • Digital
  • Insights
    Main menu

    Insights

    • Industry Insights
    • Services Insights
    • Bain Books
    • Webinars
    • Bain Futures
    View all Insights
    Featured topics
    • Tariff Response
    • Artificial Intelligence
    • Thriving in Uncertainty
    • Executive Conversations
    • Macro Trends
    • M&A Report
    • Healthcare Private Equity Report
    • Paper & Packaging Report
    • Technology Report
    • CEO's Guide to Sustainability
    • CEO Insights
    • CFO Insights
    • COO Insights
    • CIO Insights
    • CMO Insights
    View all featured topics
  • About
    Main menu

    About

    • What We Do
    • What We Believe
    • Our People & Leadership
    • Client Results
    • Awards & Recognition
    • Global Affiliations
    Further: Our global responsibility
    • Sustainability
    • Social Impact
    • World Economic Forum
    Learn more about Further
  • Carreras
    Main menu

    Carreras

    • Trabaja con Nosotros
      Carreras
      Trabaja con Nosotros
      • Find Your Place
      • Nuestras Áreas de Trabajo
      • Equipos Integrados
      • Estudiantes
      • Internships & Programs
      • Eventos de Reclutamiento
    • La Vida en Bain
      Carreras
      La Vida en Bain
      • Historias Profesionales
      • Nuestra Gente
      • Dónde Trabajamos
      • Apoyando tu Crecimiento
      • Grupos de Afinidad
      • Beneficios
    • Impact Stories
    • Nuestro Proceso
      Carreras
      Nuestro Proceso
      • Qué Esperar
      • Entrevistas
    FIND JOBS
  • Offices
    Main menu

    Offices

    • North & Latin America
      Offices
      North & Latin America
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • Europe & Africa
      Offices
      Europe & Africa
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • Middle East
      Offices
      Middle East
      • Doha
      • Dubai
      • Riyadh
    • Asia & Australia
      Offices
      Asia & Australia
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    See all offices
  • Alumni
  • Media Center
  • Subscribe
  • Contact
  • Argentina | Español
    Main menu

    Select your region and language

    • Global
      Select your region and language
      Global
      • Global (English)
    • North & Latin America
      Select your region and language
      North & Latin America
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • Europe, Middle East, & Africa
      Select your region and language
      Europe, Middle East, & Africa
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • Asia & Australia
      Select your region and language
      Asia & Australia
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    Main menu
    Saved items (0)

    You have no saved items.

    Bookmark content that interests you and it will be saved here for you to read or share later.

    Explore Bain Insights
  • Industries
    • Industries

      • Aeroespacial y Defensa
      • Agroindustria
      • Químicos
      • Construcción e Infraestructura
      • Productos de Consumo
      • Servicios Financieros
      • Salud y Ciencias de la Vida
      • Maquinaria y Equipo Industrial
      • Medios y Entretenimiento
      • Metales
      • Minería
      • Petróleo y Gas
      • Papel y Empaque
      • Private Equity
      • Sector Público y Social
      • Retail
      • Tecnología
      • Telecomunicaciones
      • Transporte
      • Viajes y Turismo
      • Servicios Públicos y Energías Renovables
  • Consulting Services
    • Consulting Services

      • Customer Experience
      • Sustainability
      • Innovation
      • M&A
      • Operations
      • People & Organization
      • Private Equity
      • Sales & Marketing
      • Strategy
      • AI, Insights, and Solutions
      • Technology
      • Transformation
  • Digital
  • Insights
    • Insights

      • Industry Insights
      • Services Insights
      • Bain Books
      • Webinars
      • Bain Futures
      View all Insights
      Featured topics
      • Tariff Response
      • Artificial Intelligence
      • Thriving in Uncertainty
      • Executive Conversations
      • Macro Trends
      • M&A Report
      • Healthcare Private Equity Report
      • Paper & Packaging Report
      • Technology Report
      • CEO's Guide to Sustainability
      • CEO Insights
      • CFO Insights
      • COO Insights
      • CIO Insights
      • CMO Insights
      View all featured topics
  • About
    • About

      • What We Do
      • What We Believe
      • Our People & Leadership
      • Client Results
      • Awards & Recognition
      • Global Affiliations
      Further: Our global responsibility
      • Sustainability
      • Social Impact
      • World Economic Forum
      Learn more about Further
  • Carreras
    Popular Searches
    • Agile
    • Digital
    • Strategy
    Your Previous Searches
      Recently Visited Pages

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Brief

      The Future of Feedback: Sometimes You Don't Have to Ask

      The Future of Feedback: Sometimes You Don't Have to Ask

      Advanced analytics can predict when a customer is happy (or not)—and then help you take action.

      By Rob Markey and Tom Springer

      • min read
      }

      Brief

      The Future of Feedback: Sometimes You Don't Have to Ask
      en

      If you live in a Western country, you’ve almost certainly heard about or even tried ride-sharing companies like Uber or Lyft. You may not, however, have heard of Didi Chuxing. Yet, with more than 400 million users in more than 400 Chinese cities, and handling 20 million rides each day, DiDi is many times bigger than Uber—whose China operations DiDi acquired and absorbed in 2016. And the terabytes of data generated by all those transactions gives DiDi a huge information advantage. Matching the data it collects on every aspect of millions of rides with end-of-ride ratings from customers allows the company to create predictive models: What sorts of experiences typically produce promoters? Which ones produce detractors?

      As a result, DiDi doesn’t need to ask all its riders for Net Promoter® feedback; instead, its computer models generate a rating score for almost every ride. Those predictive scores match up very reliably—more than 80% and improving—with what customers say in traditional Net Promoter feedback. This gives DiDi two advantages: First, it provides almost instantaneous modeled feedback to its drivers (without the often-burdensome request for its riders to do the work of providing feedback). And second, it instantly identifies situations where there’s some need for relationship or service recovery, triggering an intervention—potentially even before the customer has completed the ride. If DiDi’s algorithms identify a pickup that went awry or a ride that took longer than it should have to reach the destination, the company can issue an apology or a credit. If things went especially well, then DiDi’s app can prompt the customer with ways to tell friends about the ride-sharing service’s benefits.

      DiDi’s approach offers a glimpse into the future of feedback: using predictive analytics to figure out whether customers are promoters or detractors, and using prescriptive analytics to help close the loop and enable direct action.


      DiDi provides just one example of the many ways in which advanced analytics can enhance a company’s Net Promoter System® and improve its customer experience. The Net Promoter System has always helped companies maintain customer intimacy at scale—allowing organizations with hundreds or thousands of employees to behave like mom-and-pop shops in the eyes of their customers. Advanced analytics applied in the right ways can foster even deeper customer intimacy in an increasingly digital world, using exploding volumes of digital interaction data to remember, interpret and enhance each customer’s experience at every point of contact, digital or personal.

      So what is the full range of ways in which advanced analytics can improve the Net Promoter System? We group advanced analytics use cases in three broad categories: descriptive, predictive and prescriptive.

      Descriptive analytics: The foundation for learning


      As the name suggests, descriptive analytics describes what happened during a customer interaction. The company can then use this information as the basis for future learning and experimentation: What would happen if we responded differently?

      Descriptive analytics helped one cable TV company recognize that certain types of calls to tech support—for pixelation on the screen, for example—were rarely resolved over the phone. Trained to avoid unnecessary truck rolls, call center reps would try anyway. A relatively simple analysis of the first-call resolution rate by call type showed that these efforts were almost entirely in vain. Only 1 or 2 calls in 10 were resolved over the phone. The analysis motivated the company to create a simple business rule encouraging reps to dispatch a truck for those types of calls, rather than engage in a futile attempt to resolve the issue over the phone, saving the company money and reducing customer frustration.

      In a slightly more sophisticated example of descriptive analytics, Sunrise, the Swiss telecom company, built a statistical model aimed at identifying the key causes of customer attrition. The company populated the model with characteristics and behaviors of customers who canceled their service, hoping to learn as much as possible from each case. Sunrise assembled data on who they were, what their calling patterns were like, how long they had been customers, how much they were worth as customers and what happened during their most recent interactions before they left. The model narrowed the field of potential reasons to a few that really mattered. With clarity about the characteristics and experiences of customers who had closed accounts, Sunrise was able to prioritize and make structural changes and investments to improve the customer experience, as well as launch targeted customer interventions to reduce attrition.

      Tom Springer, a partner with Bain's Advanced Analytics practice, shares how companies can use descriptive, predictive and prescriptive analytics to understand implicit and explicit customer feedback, and act on it in real time.

      Predictive analytics: Forecasting customer behavior


      Sunrise’s experience also illustrates the evolution from descriptive to predictive analytics. A predictive model attempts to forecast what a customer will do in the future, building on insights developed by descriptive analytics. These models are based on meaningful customer and contextual data, and predictions change as the underlying data changes, helping companies to intervene and influence the outcomes of a customer’s experience.

      In Sunrise’s case, the work that went into populating the descriptive model unearthed an interesting insight: When one customer defects, other customers in his or her calling circle also tend to cancel their accounts. In fact, the more customers in your calling circle who leave for the competition, the more likely you are to leave, too. That insight provided Sunrise with an important indicator of attrition risk that hadn’t surfaced in other data or analyses. This created an opportunity to get out ahead of potential attrition among customers whose friends had left. By employing this indicator and others as input to a predictive model, Sunrise could identify customers at risk of attrition much earlier in the process, and could intervene to enhance their experience, their products and other elements of their service to earn the customers’ continued business. Reducing churn in the telecom business pays off heavily.

      Call center reps at Progressive Insurance get a Net Promoter Score® (NPS®) on almost all of their calls, but most of the feedback they receive is actually synthetic. A small fraction comes from customers themselves, along with valuable verbatim feedback. Most of the feedback, however, is produced by software from Mattersight that automatically generates an estimated likelihood-to-recommend score for each call.

      Using call recordings, the language-based Mattersight system analyzes every second of every conversation in order to create thousands of statistically significant data attributes about the call. Examples of the algorithmic production include the amount of productive interaction time, engagement of the caller, empathy level of the agent, and granular measurements such as pauses, interruptions and conversational turns. The analytics are enhanced with additional data about the customer, such as service history, product ownership and information derived from other sources.

      Some of the factors feeding the predictive model seem obvious. Swear words and the word “cancel” are rarely good. References to competitors, attrition threats and supervisor escalations usually spell trouble. Some aspects, however, are more sophisticated and capture the variability of communication styles and preferences. For example, the system classifies a customer’s personality style based on his or her spoken language, tone, tempo and syntax. This offers insight into the core psychological needs of the caller and allows algorithms to pinpoint when a customer is in distress and for how long.

      The model also leverages complex pattern-and time-based logic, which allows for a deeper contextual understanding, such as why there would be distress at the end of the call vs. the beginning. Emotion can play a large role: Positive comments are typically a good sign, while people talking over each other is often a sign of an argument or frustration, lowering the likelihood-to-recommend score. But even if the call lacks emotional cues, certain signals offer indicators about the likely outcome. For example, long periods of silence can indicate a potentially frustrating wait by the customer while the rep completes a task. The reason for a call often sets a good baseline.

      Through large-scale analytics that can identify personality patterns and trends in customer interactions, predictive models like Progressive’s enable both accelerated learning for reps and accelerated organizational learning.

      Prescriptive analytics: Creating strategic advantage


      Prescriptive analytics takes predictive analytics a step further, triggering outbound customer treatments to enhance the relationship. These treatments, which can include targeted offers, messages or recommendations, are based not only on predicted customer behavior but also on inferences about the most effective and economic content, timing and channel. Prescriptive algorithms marry preconfigured treatments and interventions with analytic inferences in operational “engines” that guide and tailor customer interactions in real time.

      For example, prescriptive algorithms can provide reps like the ones at Progressive with instant suggestions during customer calls: “Here is the next best offer to make to this customer”—that is, the action that has the best chance of enhancing the customer’s relationship with the company. Or they can provide the engine for tailoring web or mobile experiences to customers, including content or product recommendations. They help tune the company’s interactions with customers within and across any channel.

      DiDi’s engine illustrates the power and potential of prescriptive analytics. Netflix, too, provides a well-known example of prescriptive analytics in action, recommending content to viewers based on their own past behavior, behavior of viewers “like them” and real-time browsing behavior. Netflix customers, of course, are free to navigate the content in other ways (by genre, for example), but the recommendations ensure that appealing content is always on the screen, which improves the viewer’s experience and helps distinguish Netflix from other viewing interfaces—live TV or other streaming services—that are just a click away.

      For large companies, prescriptive analytics may offer one of the most important defenses against threats from digital natives. Despite the popular view of incumbent companies as lumbering behemoths unable to counter disruption from Internet start-ups, incumbents have a huge hidden asset: the data and history they amass about large numbers of customers. They also have the scale and resources to support and fund advanced analytics, to launch experiments with their customer base in ways that smaller companies cannot.

      In fact, in the age of disruption and Internet start-ups, data is the new currency, and companies that are bigger typically have more of it and more ways to use it. Scale has long benefited industrial companies, who gained cost and revenue advantages through accumulated experience in manufacturing and selling their products. In the age of advanced analytics, scale in the accumulation of data and analytic resources now offers similar advantages. Using advanced analytics is not just the cool new thing—it is the essence of maintaining a competitive edge. While many big companies remain slow-moving giants, the ones that figure out how to use this new form of scale advantage often are able to outmaneuver their smaller competitors.

      Crawl, walk, run


      It takes time to build the sort of advanced analytics capability that provides a strategic advantage to a Net Promoter company (see Figure 1). The companies that take an evolutionary “crawl, walk, run” approach have made the most rapid progress. They iterate quickly around specific use cases so that they learn and reap the benefits as they grow. Individual use cases evolve and improve as the business experiments with and refines them, while a broader portfolio of use cases ensures that advanced analytics is yielding positive results. This not only helps demonstrate the value of advanced analytics, but defines successful new ways of working and highlights additional capabilities the company needs to develop. With each new step, new opportunities appear on the horizon, attracting further investment to reach them. Evolution is an iterative process.


      future-of-feedback-top-fig1_embed
      future-of-feedback-bottom-fig1_embed

      Customer-focused executives should ask themselves the following questions: Where are we on the evolutionary scale (see Figure 2)? How strong is our data foundation? What analytic use cases have we developed already? How are they manifested in our operations?

      What resources and talent are working on all of this? Are they guided by a coherent strategy and roadmap?


      Loyalty-insights-27-fig02_embed

      If the answers to these questions aren’t immediately apparent, then the right next step may be to establish more clarity, ideally via a structured analytics strategy diagnostic. The diagnostic should be informed by benchmarks and best practices, and should address the five key priorities for establishing a clear data and advanced analytics strategy (see Figure 3). This will expose key strengths and gaps in the company’s approach, and can help build the case to address the most important opportunities and obstacles to progress.

      Achieving and sustaining loyalty leadership—be-coming a successful Net Promoter company—requires a multiyear journey to analytics leadership, so you’ll need to start sooner rather than later. It takes time to develop a strong foundation of data, analytics skills and capabilities to move from descriptive to predictive to prescriptive, and to reach scale learning and intimacy.


      Loyalty-insights-27-fig03_embed

      Rob Markey is a partner and director in Bain & Company’s New York office and leads the firm’s Global Customer Strategy & Marketing practice. He is coauthor of the best seller The Ultimate Question 2.0: How Net Promoter Companies Thrive in a Customer-Driven World. Tom Springer is coleader of Bain’s Advanced Analytics practice. He is based in Boston.

      Net Promoter®, Net Promoter System®, Net Promoter Score® and NPS® are registered trademarks of Bain & Company, Inc., Fred Reichheld and Satmetrix Systems, Inc.


      future-of-feedback-top-fig1_full

      future-of-feedback-bottom-fig1_full

      Loyalty-insights-27-fig02_full

      Loyalty-insights-27-fig03_full
      Authors
      • Headshot of Rob Markey
        Rob Markey
        Advisory Partner, Boston
      • Headshot of Tom Springer
        Tom Springer
        Alumni, Boston
      Related Consulting Services
      • AI, Insights, and Solutions
      • Net Promoter System®
      • Sales and Marketing
      How We Can Help
      • Customer Experience Analytics
      • Net Promoter®
      Sales and Marketing
      Turning Rewards into Loyalty

      Many consumers cherish rewards programs. Yet most such programs do not generate enduring loyalty.

      Read more
      Sales and Marketing
      Loyalty Insights: Assessing Your Net Promoter System®

      Is your company achieving the full benefits of its customer advocacy effort?

      Read more
      Loyalty
      Net Promoter for People: Give Employees a Voice, Get Their Best

      Net Promoter® for People is about empowering employees to bring energy, enthusiasm and creativity to delight customers.

      Read more
      Loyalty
      After Years of Customer Loyalty Programs in Insurance, What Works, and What’s Next?

      Based on Bain’s 10 years of research, five themes describe the progress and challenges of earning customers’ advocacy in an increasingly digital experience.

      Read more
      Net Promoter®
      The Psychometrics of Customer Feedback

      Survey structure can trigger undesirable psychological phenomena, but asking the right questions first can limit these risks.

      Read more
      First published in julio 2017
      Tags
      • AI, Insights, and Solutions
      • Customer Experience Analytics
      • Loyalty
      • Net Promoter System®
      • Net Promoter®
      • Sales and Marketing

      How We've Helped Clients

      Resetting Shared Services to Save $75 Million

      See more related case studies

      Transformation sparks financial leader's turnaround

      See more related case studies

      Turning around a pioneering service for working parents with sick children

      See more related case studies

      Want to continue the conversation

      We help global leaders with their organization's most critical issues and opportunities. Together, we create enduring change and results

      Bain Insights. Our perspectives on critical issues global businesses face in today's challenging environment, delivered monthly.

      *I have read and understand Bain’s Privacy Notice.

      Please read and agree to the Privacy Policy.
      Bain & Company
      Contact us Sustainability Accessibility Terms of use Privacy Modern Slavery Act Statement Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      Contact Bain

      How can we help you?

      • Business inquiry
      • Career information
      • Press relations
      • Partnership request
      • Speaker request
      See all offices