Skip to Content
  • 오피스

    오피스

    미주
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    유럽, 중동, 아프리카
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    아시아, 호주
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어

    지역 및 언어 선택

    글로벌
    • Global (English)
    미주
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    유럽, 중동, 아프리카
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    아시아, 호주
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    메인 메뉴

    산업

    • 우주항공, 방산 및 정부 서비스
    • 농업 관련 산업
    • 화학
    • 인프라, 건설 및 건축 자재
    • 소비재
    • 금융 서비스
    • 헬스케어
    • 산업용 기계 및 장비
    • 미디어 및 엔터테인먼트
    • 금속
    • 광업
    • 석유 및 가스
    • 제지 및 패키징 산업
    • 사모펀드
    • 사회 및 공공 부문
    • 유통
    • 기술
    • 텔레콤
    • 운송
    • 여행·여가
    • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    메인 메뉴

    컨설팅 서비스

    • Customer Experience
    • ESG
    • Innovation
    • M&A
    • 운영
    • 조직
    • 사모펀드
    • 고객 전략 및 마케팅
    • 전략
    • AI, 인사이트 및 솔루션
    • Technology
    • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    메인 메뉴

    베인 소개

    • 업무 소개
    • 베인의 신념
    • 구성원 및 리더십 소개
    • 고객 성과
    • 주요 수상 경력
    • 글로벌 파트너사
    Further: Our global responsibility
    • 다양성과 포용
    • 사회 공헌 활동
    • Sustainability
    • World Economic Forum
    Learn more about Further
  • Careers
    메인 메뉴

    Careers

    • Work with Us
      Careers
      Work with Us
      • Find Your Place
      • Our Work Areas
      • Integrated Teams
      • Students
      • Internships & Programs
      • Recruiting Events
    • Life at Bain
      Careers
      Life at Bain
      • Blog: Inside Bain
      • Career Stories
      • Our People
      • Where We Work
      • Supporting Your Growth
      • Affinity Groups
      • Benefits
    • Impact Stories
    • Hiring Process
      Careers
      Hiring Process
      • What to Expect
      • Interviewing
    FIND JOBS
  • 오피스
    메인 메뉴

    오피스

    • 미주
      오피스
      미주
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • 유럽, 중동, 아프리카
      오피스
      유럽, 중동, 아프리카
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • 아시아, 호주
      오피스
      아시아, 호주
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어
    메인 메뉴

    지역 및 언어 선택

    • 글로벌
      지역 및 언어 선택
      글로벌
      • Global (English)
    • 미주
      지역 및 언어 선택
      미주
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • 유럽, 중동, 아프리카
      지역 및 언어 선택
      유럽, 중동, 아프리카
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • 아시아, 호주
      지역 및 언어 선택
      아시아, 호주
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    메인 메뉴
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    • 산업

      • 우주항공, 방산 및 정부 서비스
      • 농업 관련 산업
      • 화학
      • 인프라, 건설 및 건축 자재
      • 소비재
      • 금융 서비스
      • 헬스케어
      • 산업용 기계 및 장비
      • 미디어 및 엔터테인먼트
      • 금속
      • 광업
      • 석유 및 가스
      • 제지 및 패키징 산업
      • 사모펀드
      • 사회 및 공공 부문
      • 유통
      • 기술
      • 텔레콤
      • 운송
      • 여행·여가
      • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    • 컨설팅 서비스

      • Customer Experience
      • ESG
      • Innovation
      • M&A
      • 운영
      • 조직
      • 사모펀드
      • 고객 전략 및 마케팅
      • 전략
      • AI, 인사이트 및 솔루션
      • Technology
      • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    • 베인 소개

      • 업무 소개
      • 베인의 신념
      • 구성원 및 리더십 소개
      • 고객 성과
      • 주요 수상 경력
      • 글로벌 파트너사
      Further: Our global responsibility
      • 다양성과 포용
      • 사회 공헌 활동
      • Sustainability
      • World Economic Forum
      Learn more about Further
  • Careers
    최근 검색어
      최근 방문 페이지

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      To Optimize Multivariate In-Market Tests, Run a Series

      To Optimize Multivariate In-Market Tests, Run a Series

      For multivariate testing, plan and execute a series of tests instead of one test.

      글 June Wu

      • 읽기 소요시간

      Article

      To Optimize Multivariate In-Market Tests, Run a Series
      en

      Sometimes, the tyranny of choice can be overwhelming. Consider multivariate in-market testing. The broad range of variables that need to be analyzed—product, channel, messaging, incentive, format, brand and more—can make in-market testing a challenge.

      Any organization has limited resources, and different business units frequently have different operational goals. The organization has to sort out which business needs take priority, and to figure out how to use resources from the different units efficiently. Moreover, even with the most sophisticated multivariate tests, there are limits to the number of elements and variations one can test in a single campaign. As efficient as multivariate campaigns are, they still exhaust accessible sample sizes very quickly, and those sizes are further limited by the need for control and other outside-the-experiment cells. For instance, marketers may choose to hold out a sample that’s either not exposed to any campaigns or exposed to a historical champion that serves as a benchmark.

      Read More

      Advanced Analytics Expert Commentary

      Success with advanced analytics requires both technical know-how and a thoughtful approach. In this series, Bain's experts offer practical advice on some of the most common data issues.

      So how can companies optimize their multivariate in-market tests?

      Our experience suggests a clear solution: Plan and execute a series of tests instead of one test. Multiple tests dissolve the issue of priorities, because business people can test almost everything they want. The conversation shifts from what to test to when to test it. The results of test 1 provide feedback that informs the makeup of test 2, and so on. When sequencing tests, you still have to think about which test attributes work well together and which don’t. But you don’t have to worry about leaving out certain elements.

      A company interested in testing different products, messages, incentives, channels and segments can design a series of minimultivariate campaigns where each campaign has its own focus. Marketers would sequentially test each of these elements, incorporating lessons from previous campaigns into subsequent campaigns.

      For example, you would start with a product campaign, assuming that’s the most important of all elements. You would focus on learning the main effects first, where you test only the effect of each individual product feature without worrying about feature interactions (that is, whether the effects of two features together is more or less than the sum of the two parts). This simplifies the scope, so you can fit the desired attributes into a single multivariate test. By the end of the first campaign, you would learn which feature combinations optimize the product. Future campaigns could further test and validate how well those features work together.

      Armed with that knowledge, a second campaign would fix product offers and test only other soft elements such as messaging and incentives. Again, with this simplified scope, all test elements can easily fit into a single multivariate test, providing insights into which specific message and incentive gets the best response.

      A third campaign would focus on the channel or segment or both. Some marketers might ask whether the optimal product and message will vary by channels or segments. Although that’s a legitimate question, it’s hard to answer in practice, because the market typically is too small to test within channels or within segments (multivariate in-market tests typically require a sample of more than 50,000)—not to mention the operational challenge of implementing different strategies by channel or segment.

      By the end of the third campaign, marketers would learn a lot, yet the best is still to come: You can revisit the elements tested and validate them in new combinations. For instance, you can retest product features and fix all other elements at the previously determined optimal level. Now, instead of testing main effects learned from the first campaign, you can focus on feature interactions, meaning how well each feature works when paired with another feature. Since all other features have been optimized, you can work with a very short list and introduce small variations to test the most probable interactions that have a high potential to be significant. This also helps to validate whether the product optimizations in the first campaign have been successful.

      By running these four multivariate campaigns sequentially, marketers achieve the goal of testing everything they wanted and optimizing all the elements. Since each campaign is a multivariate test, insights emerge from making cell comparisons within campaigns. This makes sample-size usage efficient, as the entire accessible sample can be reused among the campaign series. That’s a big advantage compared with alternative approaches such as A/B testing, where marketers must use a fresh sample for each campaign to avoid samples being contaminated by previous campaigns.

      Many organizations run multiple in-market tests a year, with digital natives running hundreds. Yet we have observed that many of these tests are suboptimal:

      • Some are A/B testing instead of multivariate testing.
      • Others have no clear priority for each test, leading to multiple tests duplicating efforts.
      • Results and insights don’t get generated soon enough to be incorporated in subsequent tests.

      As a result, most companies should consider designing a one-year or multiyear roadmap for a long-term, in-market test-optimization strategy.

      In doing so, they should avoid common pitfalls. For each individual campaign, they’ll want to leverage a multivariate test to learn about individual elements more efficiently—rather than splitting a multivariate campaign into a series of A/B tests. Researchers may need to test multiple cells for a single multivariate campaign, and marketers may think they can simply split them into two subsequent multivariate campaigns, each of which has half of the cells. Not so. For a multivariate campaign to work properly, marketers need to test all necessary cells in a single campaign in the same time period, so they can control for all other external factors, and therefore attribute all lever effects solely to the testing components.

      With some careful planning, companies can avoid these pitfalls and move to sequential testing. In doing so, they’ll be pleasantly surprised at how many elements and variations they can test and optimize for little or no incremental cost.

      June Wu is an expert in Bain & Company's Global Advanced Analytics Group.

      저자
      • Headshot of June Wu
        June Wu
        Expert Associate Partner, Boston
      문의하기
      관련 컨설팅 서비스
      • 어드밴스드 애널리틱스
      최적의 솔루션 찾기
      • Experimentation at Scale
      어드밴스드 애널리틱스
      Choose Your Weapon: Prediction or Prescription

      When selecting a model for advanced analytics, the right choice comes down to understanding the challenge at hand.

      자세히 보기
      어드밴스드 애널리틱스
      Choosing Between Primary Research and In-Market Tests

      Marketers have a variety of advanced analytics tools available for understanding customer preferences.

      자세히 보기
      어드밴스드 애널리틱스
      What to Look For In a Text Analytics Platform

      Executives should keep five key criteria in mind when evaluating text analytics platforms.

      자세히 보기
      어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      Successful A/B Tests in Retail Hinge on These Design Considerations

      Following a small set of guidelines will result in more meaningful and trustworthy results.

      자세히 보기
      어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      자세히 보기
      First published in 12월 2017
      태그
      • 어드밴스드 애널리틱스
      • 어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      • Experimentation at Scale

      프로젝트 사례

      An Airline’s Ancillary Revenue Soars Thanks to Test-and-Learn Experimentation

      See more related case studies

      고객 전략 및 마케팅 Direct marketing excellence through experimental design

      See more related case studies

      어드밴스드 애널리틱스 Analytics guide an entertainment company's growth strategy

      See more related case studies

      베인에 궁금하신 점이 있으신가요?

      베인은 주저 없이 변화를 마주할 줄 아는 용감한 리더들과 함께합니다. 그리고, 이들의 담대한 용기는 고객사의 성공으로 이어집니다.

      급변하는 비즈니스 환경에서 살아남기 위한 선도자의 시각. 월간 Bain Insights에서 글로벌 비즈니스의 핵심 이슈를 확인하십시오.

      *개인정보 정책을 읽었으며 그 내용에 동의합니다.

      Privacy Policy를 읽고 동의해주십시오.
      Bain & Company
      문의하기 환경정책 Accessibility 이용약관 개인정보 보호 쿠키 사용 정책 Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      문의하기

      무엇을 도와드릴까요?

      • 프로젝트 문의
      • 채용 정보
      • 언론
      • 제휴 문의
      • 연사 초청
      오피스 전체보기