Skip to Content
  • 오피스

    오피스

    미주
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    유럽, 중동, 아프리카
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    아시아, 호주
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어

    지역 및 언어 선택

    글로벌
    • Global (English)
    미주
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    유럽, 중동, 아프리카
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    아시아, 호주
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    메인 메뉴

    산업

    • 우주항공, 방산 및 정부 서비스
    • 농업 관련 산업
    • 화학
    • 인프라, 건설 및 건축 자재
    • 소비재
    • 금융 서비스
    • 헬스케어
    • 산업용 기계 및 장비
    • 미디어 및 엔터테인먼트
    • 금속
    • 광업
    • 석유 및 가스
    • 제지 및 패키징 산업
    • 사모펀드
    • 사회 및 공공 부문
    • 유통
    • 기술
    • 텔레콤
    • 운송
    • 여행·여가
    • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    메인 메뉴

    컨설팅 서비스

    • Customer Experience
    • ESG
    • Innovation
    • M&A
    • 운영
    • 조직
    • 사모펀드
    • 고객 전략 및 마케팅
    • 전략
    • AI, 인사이트 및 솔루션
    • Technology
    • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    메인 메뉴

    베인 소개

    • 업무 소개
    • 베인의 신념
    • 구성원 및 리더십 소개
    • 고객 성과
    • 주요 수상 경력
    • 글로벌 파트너사
    Further: Our global responsibility
    • 다양성과 포용
    • 사회 공헌 활동
    • Sustainability
    • World Economic Forum
    Learn more about Further
  • Careers
    메인 메뉴

    Careers

    • Work with Us
      Careers
      Work with Us
      • Find Your Place
      • Our Work Areas
      • Integrated Teams
      • Students
      • Internships & Programs
      • Recruiting Events
    • Life at Bain
      Careers
      Life at Bain
      • Blog: Inside Bain
      • Career Stories
      • Our People
      • Where We Work
      • Supporting Your Growth
      • Affinity Groups
      • Benefits
    • Impact Stories
    • Hiring Process
      Careers
      Hiring Process
      • What to Expect
      • Interviewing
    FIND JOBS
  • 오피스
    메인 메뉴

    오피스

    • 미주
      오피스
      미주
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • 유럽, 중동, 아프리카
      오피스
      유럽, 중동, 아프리카
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • 아시아, 호주
      오피스
      아시아, 호주
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어
    메인 메뉴

    지역 및 언어 선택

    • 글로벌
      지역 및 언어 선택
      글로벌
      • Global (English)
    • 미주
      지역 및 언어 선택
      미주
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • 유럽, 중동, 아프리카
      지역 및 언어 선택
      유럽, 중동, 아프리카
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • 아시아, 호주
      지역 및 언어 선택
      아시아, 호주
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    메인 메뉴
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    • 산업

      • 우주항공, 방산 및 정부 서비스
      • 농업 관련 산업
      • 화학
      • 인프라, 건설 및 건축 자재
      • 소비재
      • 금융 서비스
      • 헬스케어
      • 산업용 기계 및 장비
      • 미디어 및 엔터테인먼트
      • 금속
      • 광업
      • 석유 및 가스
      • 제지 및 패키징 산업
      • 사모펀드
      • 사회 및 공공 부문
      • 유통
      • 기술
      • 텔레콤
      • 운송
      • 여행·여가
      • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    • 컨설팅 서비스

      • Customer Experience
      • ESG
      • Innovation
      • M&A
      • 운영
      • 조직
      • 사모펀드
      • 고객 전략 및 마케팅
      • 전략
      • AI, 인사이트 및 솔루션
      • Technology
      • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    • 베인 소개

      • 업무 소개
      • 베인의 신념
      • 구성원 및 리더십 소개
      • 고객 성과
      • 주요 수상 경력
      • 글로벌 파트너사
      Further: Our global responsibility
      • 다양성과 포용
      • 사회 공헌 활동
      • Sustainability
      • World Economic Forum
      Learn more about Further
  • Careers
    최근 검색어
      최근 방문 페이지

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      What to Look For In a Text Analytics Platform

      What to Look For In a Text Analytics Platform

      Executives should keep five key criteria in mind when evaluating text analytics platforms.

      글 Harika Guddanti

      • 읽기 소요시간

      Article

      What to Look For In a Text Analytics Platform
      en

      Analyzing text data can provide rich insights about customers’ perceptions and experiences, as well as information about root causes of problems they encounter in their interactions with a company. Gleaning these insights, however, depends on using the right tools, to harness the power of text, in the right ways. And the landscape of tools and platforms is rapidly changing. Here, I will discuss some of the most useful criteria for evaluating commercial text analytics platforms, based on recent experience.

      Currently, the text analytics vendor market is relatively fragmented, and few vendors stand out for their differentiated offerings. No strong industry leader has emerged, as the research and complex algorithms continue to evolve.

      Read More

      Advanced Analytics Expert Commentary

      Success with advanced analytics requires both technical know-how and a thoughtful approach. In this series, Bain's experts offer practical advice on some of the most common data issues.

      Choosing the appropriate tools and methodologies will depend on the particular use case. Corporate customers that have a stable topic domain have different requirements than firms dealing with a shifting array of multiple topics. In our experience, platforms that excel in speed and flexibility of analysis do the best job of serving use cases that do not focus on one domain. Some companies, though, may prefer platforms that integrate with customer relationship management (CRM) systems as production tools and can be tailored to a specific domain. Platforms with completely automated techniques tend to be brittle and too inflexible to incorporate new assumptions, terms or topics. Thus, initially defining key criteria by use case is an important step to consider when selecting a text analytics platform.

      As a quick primer, here are the main features that companies should look for in a text analytics platform.

      • Application of analytical methods that provide accurate topic identification and sentiment analysis…
        • with the ability to incorporate flexible logic to interpret technical terms and local jargon; and
        • the ability to work with small and large data sets effectively.
      • Metadata used to complement text data and improve the quality of results.
      • Flexible reporting dashboards that help visualize text insights…
        • through customizable word clouds that allow combining of words, exclusion of words and formatting;
        • with the ability to explore topics and sentiment at varying levels of detail; and
        • the ability to export results in flexible formats, including tagged responses with topic and sentiment.
      • Ease of use and navigation, and speedy performance when using the platform.
      • Multiple language support.

      Let’s expand on these points.

      Analytics methods that provide accurate topic identification and sentiment analysis. The most advanced platforms apply a combination of methods to analyze text, including machine learning techniques (supervised or unsupervised methods), semantic or natural language processing (NLP), topic identification and business rules.

      Platforms with machine learning methods use advanced algorithms, but offer limited customization and tend to be black-box models that do not show users the vendor’s combination of algorithms, so the user may not always be able to explain results. These platforms can produce results quickly, but fall short with small data sets, short phrases and comments with technical terms or sarcasm. Running test data through multiple models and comparing the results helps to identify the model with highest recall and precision rate, and this is where more transparency and control over the selection of algorithms can help.

      NLP and business-rules-based models tend to focus on industry- or domain-specific taxonomies and classifiers. This approach works well for repeated projects based on consistent topics or industry domains, mainly for larger companies. Additionally, established vendors tend to have documented libraries that work as starter kits for analysis and can be customized for a new use case. But if you stray from the original libraries, performance can degrade.

      When it comes to sentiment analysis, most platforms provide a tag of positive, negative or neutral for each textual statement. Some platforms go further and provide results on a scale of 1 to 10. However, accuracy varies by platform and may depend on the quality of text being analyzed. Platforms that produce high-accuracy sentiment tagging are rare, and most platforms still do not accurately interpret sarcasm. In some instances, companies might increase accuracy by tuning sentiment, creating custom rules or hand coding results, but this may not be worth the effort and is not practical for large data sets. Be sure you can measure your false-positives rate here, and tune for your desired levels of sensitivity and specificity.

      The ability to use metadata to complement text data. Despite being relatively easy to implement, many platforms and models lack this capability. Structured data such as a Net Promoter Score® (a key metric of customer loyalty) can complement text results and sometimes act as tie breaker for statements with ambiguous sentiment.

      Flexible reporting dashboards that help visualize text insights. Most platforms provide reporting on results with basic charts. Some go further with customizable reports to better understand the results and improve analytics models, or have an enhanced dashboard. And some can improve the visual aspects of insights by integrating with tools such as Tableau. Word clouds, for instance, provide a quick highlight of key words and themes. Here, two useful features are the ability to combine similar words or topics and exclude words. Another function, frequency charts, allow users to sort the data on sentiment, topics and subtopics, in order to get a high-level overview of results.

      Users also should look for the ability to export results in flexible formats and to add or remove variables. For example, they should be able to tag each row of text with sentiment and topic.

      A fast and easy-to-use interface. A simple interface makes it easy for analysts to learn and use the platform, navigate through the various functions and visualize results. Users want a fast upload and download of data, and the ability to handle multiple file formats.

      Multiple language support. Many platforms still work best only with English, and some do not support other languages at all. Good platforms support multiple languages, using algorithms that take into account each language’s grammar, rather than having to translate into English, which eliminates valuable nuances embedded in a language. Platforms built by regional vendors handle their main local language (mostly Spanish, French, German, Dutch and Chinese), but most are still limited in sentiment identification.

      Platforms that can support the criteria discussed here will be most useful. And the best platforms will continue to improve their features and interface, adopting the latest methods in text analytics.

      Harika Guddanti is a senior specialist in Bain & Company’s Advanced Analytics practice, and is based in Chicago.

      Net Promoter Score® is a registered trademark of Bain & Company, Inc.; Fred Reichheld; and Satmetrix Systems, Inc.

      저자
      • Harika Guddanti
        Alumni, Seattle
      문의하기
      관련 컨설팅 서비스
      • 어드밴스드 애널리틱스
      어드밴스드 애널리틱스
      How Big Data Analytics Is Breaking through Organizational Walls

      With more data than ever before, companies need to think about where and how big data can directly serve the business.

      자세히 보기
      어드밴스드 애널리틱스
      Learn the Essential Practices of Highly Effective Analytics Teams

      To be truly effective, analytics teams must adopt best practices at every level.

      자세히 보기
      어드밴스드 애널리틱스
      Three Promises and Perils of Big Data

      Advanced customer analytics can be a powerful business tool, but companies need to avoid common pitfalls before investing.

      자세히 보기
      어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      자세히 보기
      어드밴스드 애널리틱스
      Want More Out of Your AI Investments? Think People First

      To unlock AI’s exponential productivity potential, companies must modernize workflow and workforce in tandem.

      자세히 보기
      First published in 5월 2017
      태그
      • 어드밴스드 애널리틱스
      • 어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리

      프로젝트 사례

      어드밴스드 애널리틱스 Analytics Powers a Software Company’s Bold Revenue Goals

      See more related case studies

      고객 전략 및 마케팅 Direct marketing excellence through experimental design

      See more related case studies

      어드밴스드 애널리틱스 Analytics guide an entertainment company's growth strategy

      See more related case studies

      베인에 궁금하신 점이 있으신가요?

      베인은 주저 없이 변화를 마주할 줄 아는 용감한 리더들과 함께합니다. 그리고, 이들의 담대한 용기는 고객사의 성공으로 이어집니다.

      급변하는 비즈니스 환경에서 살아남기 위한 선도자의 시각. 월간 Bain Insights에서 글로벌 비즈니스의 핵심 이슈를 확인하십시오.

      *개인정보 정책을 읽었으며 그 내용에 동의합니다.

      Privacy Policy를 읽고 동의해주십시오.
      Bain & Company
      문의하기 환경정책 Accessibility 이용약관 개인정보 보호 쿠키 사용 정책 Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      문의하기

      무엇을 도와드릴까요?

      • 프로젝트 문의
      • 채용 정보
      • 언론
      • 제휴 문의
      • 연사 초청
      오피스 전체보기