Skip to Content
  • 오피스

    오피스

    미주
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    유럽, 중동, 아프리카
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    아시아, 호주
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어

    지역 및 언어 선택

    글로벌
    • Global (English)
    미주
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    유럽, 중동, 아프리카
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    아시아, 호주
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    메인 메뉴

    산업

    • 우주항공, 방산 및 정부 서비스
    • 농업 관련 산업
    • 화학
    • 인프라, 건설 및 건축 자재
    • 소비재
    • 금융 서비스
    • 헬스케어
    • 산업용 기계 및 장비
    • 미디어 및 엔터테인먼트
    • 금속
    • 광업
    • 석유 및 가스
    • 제지 및 패키징 산업
    • 사모펀드
    • 사회 및 공공 부문
    • 유통
    • 기술
    • 텔레콤
    • 운송
    • 여행·여가
    • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    메인 메뉴

    컨설팅 서비스

    • Customer Experience
    • ESG
    • Innovation
    • M&A
    • 운영
    • 조직
    • 사모펀드
    • 고객 전략 및 마케팅
    • 전략
    • AI, 인사이트 및 솔루션
    • Technology
    • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    메인 메뉴

    베인 소개

    • 업무 소개
    • 베인의 신념
    • 구성원 및 리더십 소개
    • 고객 성과
    • 주요 수상 경력
    • 글로벌 파트너사
    Further: Our global responsibility
    • 다양성과 포용
    • 사회 공헌 활동
    • Sustainability
    • World Economic Forum
    Learn more about Further
  • Careers
    메인 메뉴

    Careers

    • Work with Us
      Careers
      Work with Us
      • Find Your Place
      • Our Work Areas
      • Integrated Teams
      • Students
      • Internships & Programs
      • Recruiting Events
    • Life at Bain
      Careers
      Life at Bain
      • Blog: Inside Bain
      • Career Stories
      • Our People
      • Where We Work
      • Supporting Your Growth
      • Affinity Groups
      • Benefits
    • Impact Stories
    • Hiring Process
      Careers
      Hiring Process
      • What to Expect
      • Interviewing
    FIND JOBS
  • 오피스
    메인 메뉴

    오피스

    • 미주
      오피스
      미주
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • 유럽, 중동, 아프리카
      오피스
      유럽, 중동, 아프리카
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • 아시아, 호주
      오피스
      아시아, 호주
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어
    메인 메뉴

    지역 및 언어 선택

    • 글로벌
      지역 및 언어 선택
      글로벌
      • Global (English)
    • 미주
      지역 및 언어 선택
      미주
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • 유럽, 중동, 아프리카
      지역 및 언어 선택
      유럽, 중동, 아프리카
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • 아시아, 호주
      지역 및 언어 선택
      아시아, 호주
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    메인 메뉴
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    • 산업

      • 우주항공, 방산 및 정부 서비스
      • 농업 관련 산업
      • 화학
      • 인프라, 건설 및 건축 자재
      • 소비재
      • 금융 서비스
      • 헬스케어
      • 산업용 기계 및 장비
      • 미디어 및 엔터테인먼트
      • 금속
      • 광업
      • 석유 및 가스
      • 제지 및 패키징 산업
      • 사모펀드
      • 사회 및 공공 부문
      • 유통
      • 기술
      • 텔레콤
      • 운송
      • 여행·여가
      • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    • 컨설팅 서비스

      • Customer Experience
      • ESG
      • Innovation
      • M&A
      • 운영
      • 조직
      • 사모펀드
      • 고객 전략 및 마케팅
      • 전략
      • AI, 인사이트 및 솔루션
      • Technology
      • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    • 베인 소개

      • 업무 소개
      • 베인의 신념
      • 구성원 및 리더십 소개
      • 고객 성과
      • 주요 수상 경력
      • 글로벌 파트너사
      Further: Our global responsibility
      • 다양성과 포용
      • 사회 공헌 활동
      • Sustainability
      • World Economic Forum
      Learn more about Further
  • Careers
    최근 검색어
      최근 방문 페이지

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      Finding the Silver Lining in the GDPR Storm Cloud

      Finding the Silver Lining in the GDPR Storm Cloud

      There are ways to improve marketing models under the new regulatory regime.

      글 Josef Rieder

      • 읽기 소요시간
      }

      Article

      Finding the Silver Lining in the GDPR Storm Cloud
      en

      Doomsday has been postponed. With the introduction of the European Union’s General Data Protection Regulation (GDPR) in May, many analysts and businesspeople predicted chaos. However, the law has had only negligible consequences so far.

      Some US websites were blocked for EU citizens because companies hadn’t prepared for the new regulation, which applies to non-EU companies serving EU customers. Just before the GDPR deadline, inboxes around the world were flooded with emails from companies asking for explicit consent to store personal user data for legitimate business use. For many customers, this was an opportunity to unsubscribe. And many companies used the introduction of GDPR to build (or rebuild) trust in their data usage processes.

      Still, the analytics community remains broadly uncertain about what marketing scientists can do with customer data under the new regime. In general, modeling of personal data is still possible, but companies must apply strict anonymization standards and more stringently document their models.

      Read More

      Advanced Analytics Expert Commentary

      Success with advanced analytics requires both technical know-how and a thoughtful approach. In this series, Bain's experts offer practical advice on some of the most common data issues.

      Consider a common data-modeling situation affected by the new regulation: the linkage of primary research data with internal customer relationship management (CRM) systems. According to GDPR, survey data must be treated as personal data where it can be linked to an identifiable individual, meaning that survey responses and any additional matched variables will also be treated as personal data. In our recent work on this issue, we showed that it is possible to improve marketing models under GDPR using, for example, pseudonymized data, whereby a customer cannot be identified even if some of the individual’s database variables are linked to the survey data. (To make data pseudonymous, the linked variables are categorized before matching to the survey data—for instance, with rough spending ranges instead of precise amounts. In addition, a third party does the matching, so that neither client nor analytical service provider is able to link the survey data and customer database directly.)

      A new take on predictive modeling

      In the traditional approach, primary research data is linked with the CRM database on a highly aggregated level, such as by customer segments. Often, this is a good-enough solution. You can then use tagged segments to build a marketing strategy. However, aggregating the data causes the spicy taste of the sauce to fade. We wanted more granular detail that would yield greater value for marketing purposes. So we accepted the challenge to develop new approaches for linking survey data with CRM databases, in compliance with GDPR.

      Typically, to link external and internal data, you first segment the survey data, with the number of segments ranging between 4 and 10. Then, you train a tagging model to link the segments by way of common attributes between the survey and the CRM system (see Figure 1). This meets privacy requirements, though with the trade-off of reducing variation in key survey measures.

      Figure 1
      Segment tagging is a common way to link survey data to CRM systems
      Segment tagging is a common way to link survey data to CRM systems
      Segment tagging is a common way to link survey data to CRM systems

      In our new approach, we took a cue from “record linkage,” a concept also used for segment tagging. Because segments are tagged to certain demographic and behavior profiles, why not match the original survey results instead of just the segments?

      To accomplish this, we had to consider two factors. First, to meet the requirements of GDPR, we ensured anonymization, particularly by avoiding one-to-one matchings. Second, from a modeling perspective, we avoided overfitting. When aggregating by common attributes across the external and internal data, it is important to categorize the behavioral variables, which provides a first level of anonymization. In addition, we randomly perturbed some data to avoid overfitting and further strengthen data privacy. In situations where we didn’t match combinations of CRM attributes, these could be easily imputed (see Figure 2).

      Figure 2
      Record linkage offers a new approach to data matching
      Record linkage offers a new approach to data matching
      Record linkage offers a new approach to data matching

      Alternatively, using probability matching as inspiration, we calculated a similarity score between the combinations in the internal and external data (see Figure 3). This score converts to a linkage weight and is used to calculate the weighted average of customer needs assigned in the CRM system.

      Figure 3
      Probability matching can inspire how you do data matching
      Probability matching can inspire how you do data matching
      Probability matching can inspire how you do data matching

      We have found that this new approach offers several advantages:

      • It allows for simultaneous matching of many variables.
      • It provides more variation and thus aligns more closely to the original data structure.
      • More detailed and accurate data improves the efficiency of marketing applications and the underlying models, such as those for customer lifetime value, cross-sell/upsell and churn.
      • It helps companies give customers more relevant product and service communications.
      • Companies may see higher revenues from their marketing activities, at a lower cost.
      • If needed for strategic marketing purposes, a company can develop segmentation based on the tagged data directly from the CRM database.

      The method described here is one of many that can lead to strong data modeling under GDPR. If companies use the heightened focus on data privacy to improve their standards for modeling pipelines, then GDPR should not restrict them from developing innovative predictive models based on personal data.

      Diane Berry and Josef Rieder are senior managers in Bain & Company’s Advanced Analytics Group. They are based, respectively, in London and Munich.

      저자
      • Headshot of Josef Rieder
        Josef Rieder
        Alumni, Munich
      문의하기
      관련 컨설팅 서비스
      • 어드밴스드 애널리틱스
      어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      자세히 보기
      어드밴스드 애널리틱스
      Retailers Have a Secret Weapon in AI-Powered Shopping: Trust

      US consumers would be more comfortable with AI buying on their behalf if a familiar retailer were involved.

      자세히 보기
      어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      Making Friends with Collinearity: How Driver Interactions Can Inform Targeted Interventions

      Driver analysis helps inform decisions on which drivers deserve the greatest effort.

      자세히 보기
      어드밴스드 애널리틱스
      Four Ways Leaders Can Make AI Redesigns Stick

      As companies redesign to scale AI, these four lessons help leaders ensure their organizations actually live the new operating model.

      자세히 보기
      어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      Mission Possible: Driver Analysis with Collinear Variables

      Many commonly used methods have serious limitations when assessing the variable importance of collinear drivers.

      자세히 보기
      First published in 12월 2018
      태그
      • 어드밴스드 애널리틱스
      • 어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리

      프로젝트 사례

      어드밴스드 애널리틱스 Analytics Powers a Software Company’s Bold Revenue Goals

      See more related case studies

      고객 전략 및 마케팅 Direct marketing excellence through experimental design

      See more related case studies

      어드밴스드 애널리틱스 Analytics guide an entertainment company's growth strategy

      See more related case studies

      베인에 궁금하신 점이 있으신가요?

      베인은 주저 없이 변화를 마주할 줄 아는 용감한 리더들과 함께합니다. 그리고, 이들의 담대한 용기는 고객사의 성공으로 이어집니다.

      급변하는 비즈니스 환경에서 살아남기 위한 선도자의 시각. 월간 Bain Insights에서 글로벌 비즈니스의 핵심 이슈를 확인하십시오.

      *개인정보 정책을 읽었으며 그 내용에 동의합니다.

      Privacy Policy를 읽고 동의해주십시오.
      Bain & Company
      문의하기 환경정책 Accessibility 이용약관 개인정보 보호 쿠키 사용 정책 Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      문의하기

      무엇을 도와드릴까요?

      • 프로젝트 문의
      • 채용 정보
      • 언론
      • 제휴 문의
      • 연사 초청
      오피스 전체보기