Skip to Content
  • 오피스

    오피스

    미주
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    유럽, 중동, 아프리카
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    아시아, 호주
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어

    지역 및 언어 선택

    글로벌
    • Global (English)
    미주
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    유럽, 중동, 아프리카
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    아시아, 호주
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    메인 메뉴

    산업

    • 우주항공, 방산 및 정부 서비스
    • 농업 관련 산업
    • 화학
    • 인프라, 건설 및 건축 자재
    • 소비재
    • 금융 서비스
    • 헬스케어
    • 산업용 기계 및 장비
    • 미디어 및 엔터테인먼트
    • 금속
    • 광업
    • 석유 및 가스
    • 제지 및 패키징 산업
    • 사모펀드
    • 사회 및 공공 부문
    • 유통
    • 기술
    • 텔레콤
    • 운송
    • 여행·여가
    • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    메인 메뉴

    컨설팅 서비스

    • Customer Experience
    • ESG
    • Innovation
    • M&A
    • 운영
    • 조직
    • 사모펀드
    • 고객 전략 및 마케팅
    • 전략
    • AI, 인사이트 및 솔루션
    • Technology
    • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    메인 메뉴

    베인 소개

    • 업무 소개
    • 베인의 신념
    • 구성원 및 리더십 소개
    • 고객 성과
    • 주요 수상 경력
    • 글로벌 파트너사
    Further: Our global responsibility
    • 다양성과 포용
    • 사회 공헌 활동
    • Sustainability
    • World Economic Forum
    Learn more about Further
  • Careers
    메인 메뉴

    Careers

    • Work with Us
      Careers
      Work with Us
      • Find Your Place
      • Our Work Areas
      • Integrated Teams
      • Students
      • Internships & Programs
      • Recruiting Events
    • Life at Bain
      Careers
      Life at Bain
      • Blog: Inside Bain
      • Career Stories
      • Our People
      • Where We Work
      • Supporting Your Growth
      • Affinity Groups
      • Benefits
    • Impact Stories
    • Hiring Process
      Careers
      Hiring Process
      • What to Expect
      • Interviewing
    FIND JOBS
  • 오피스
    메인 메뉴

    오피스

    • 미주
      오피스
      미주
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • 유럽, 중동, 아프리카
      오피스
      유럽, 중동, 아프리카
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • 아시아, 호주
      오피스
      아시아, 호주
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어
    메인 메뉴

    지역 및 언어 선택

    • 글로벌
      지역 및 언어 선택
      글로벌
      • Global (English)
    • 미주
      지역 및 언어 선택
      미주
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • 유럽, 중동, 아프리카
      지역 및 언어 선택
      유럽, 중동, 아프리카
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • 아시아, 호주
      지역 및 언어 선택
      아시아, 호주
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    메인 메뉴
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    • 산업

      • 우주항공, 방산 및 정부 서비스
      • 농업 관련 산업
      • 화학
      • 인프라, 건설 및 건축 자재
      • 소비재
      • 금융 서비스
      • 헬스케어
      • 산업용 기계 및 장비
      • 미디어 및 엔터테인먼트
      • 금속
      • 광업
      • 석유 및 가스
      • 제지 및 패키징 산업
      • 사모펀드
      • 사회 및 공공 부문
      • 유통
      • 기술
      • 텔레콤
      • 운송
      • 여행·여가
      • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    • 컨설팅 서비스

      • Customer Experience
      • ESG
      • Innovation
      • M&A
      • 운영
      • 조직
      • 사모펀드
      • 고객 전략 및 마케팅
      • 전략
      • AI, 인사이트 및 솔루션
      • Technology
      • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    • 베인 소개

      • 업무 소개
      • 베인의 신념
      • 구성원 및 리더십 소개
      • 고객 성과
      • 주요 수상 경력
      • 글로벌 파트너사
      Further: Our global responsibility
      • 다양성과 포용
      • 사회 공헌 활동
      • Sustainability
      • World Economic Forum
      Learn more about Further
  • Careers
    최근 검색어
      최근 방문 페이지

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      How Machine Learning and Natural Language Processing Produce Deeper Survey Insights

      How Machine Learning and Natural Language Processing Produce Deeper Survey Insights

      Analyzing open-ended responses from a large group requires tools emerging from the artificial intelligence revolution.

      글 Ruud Hellemons and Roger Zhu

      • 읽기 소요시간
      }

      Article

      How Machine Learning and Natural Language Processing Produce Deeper Survey Insights
      en
      한눈에 보기
      • When surveys of large numbers of people contain open-ended responses, traditional analytical approaches fall short.
      • However, machine learning and natural language processing can handle the statistical and contextual challenges involved.
      • That’s how a global retailer was able to derive insights about its culture and values from a survey of tens of thousands of employees around the world.

      When assessing consumer or employee sentiment, traditional approaches tend to focus on management interviews, focus groups, and numerically based survey questions as the core basis for insights. On the other hand, open-ended survey text responses have played a sparing role, given the large analytical effort involved.

      The traditional approaches were not sufficient for a global retailer. It wanted to deeply understand employee sentiment and how well employees believed the company and its leaders were living up to the stated values. To understand the root causes, the company worked with Bain to conduct an in-depth diagnostic. The assessment involved management interviews and focus groups, as well as a survey of tens of thousands of frontline and corporate employees in more than 20 languages. The scale of the assessment and the need to understand trends specific to different locations and functions required an in-depth analysis of open-ended survey responses.

      We decided to use machine learning (ML) and natural language processing (NLP) techniques to address several challenges:  

      • Selection bias: Due to the diversity of employees, the retailer wanted to ensure that insights were not solely derived from a small group of interviews and focus group participants, but instead captured a broad range of opinions and experiences.
      • Statistical significance: Given the assessment’s global reach, the insights needed to have a statistically rigorous foundation backed by the survey data.
      • Lack of nuance when analyzing open-ended text: The survey focused on complex themes around culture and ways of working. Any analysis of the free text responses required a much greater degree of analytical rigor than simple word categorizations, in order to effectively capture sentiment.
      • Complexity of language: Analyzing open-ended responses involves relatively sparse textual data. Respondents may refer to the same underlying theme using different language that contains no shared words—for instance, “I think my salary is too low” and “They are not paying me enough.” The methodology employed must be able to recognize and manage this complexity. 
      • Unique context: It has become common practice in text analytics to employ pretrained models to classify open-ended responses, based on a predetermined set of themes, and occasionally refined by manually tagging a limited set of responses as examples for new themes. However, our experience with surveys suggests that each use case has a unique context. That makes it difficult to determine a complete set of themes ahead of the survey. This is particularly true for large global enterprises, given the varying cultural nuances, company-specific language, and geographic variations. Instead, one needs an unopinionated, data-driven approach for determining themes, based on the core data set.

      The approach: Dialect text analytics

      To tackle these challenges, we deployed our Dialect text analytics software to understand, categorize, and produce visualizations for key themes from the survey responses. This software employs recent breakthroughs in language models and ML, and can stand up to the complexities of open-ended responses from large surveys, including spelling errors and very short or incomplete phrases, such as “Pay is good, management not so much.”

      Over the past few years, the “deep learning” revolution in AI and ML has made strides in text analytics, from chatbots to sentiment analysis and text generation. In certain applications, algorithms now match or even exceed human capabilities. Nevertheless, there remains room for improvement in topic modeling to understand common themes mentioned in text. That’s why Bain built a text analytics library, which enable this form of unsupervised analytics.

      The first phase in our approach involves exploratory modeling to detect themes in the data. This unsupervised topic model ensures that the underlying data informs the identification of themes, without bias toward preconceptions and unstated assumptions. This phase generally consists of four steps:

      1. Preprocessing the text: We first apply textual cleaning practices such as removing punctuation, setting words to lower case, filtering out uninformative words, and correcting spelling errors. Even with large-scale surveys, the volume of text can be relatively low for ML purposes compared with other data sources such as online reviews or social media posts. As a result, it is critical to condense the data by recoding verbs and nouns to their lemma (grouped inflectional forms of words). Finally, respondents regularly tend to provide feedback as a compact list of issues (such as “nice colleagues, long working hours”), which requires tokenization to split responses into sentence parts, so that we can attribute a single response to multiple themes.
      2. Training the language model to learn relationships between words: After preprocessing, we transform words in the texts to vectors called “word embeddings,” which convert the text information into numerical inputs and infer meaning by their contextual similarity. Here, it is critical to tailor the embeddings to the business context, as the same word may have dramatically different connotations in different companies and industries.
      3. Running theme detection using an unsupervised clustering algorithm: The unsupervised algorithm clusters the text into themes without initial human intervention, while also allowing model customizations for different survey populations or questions (see Figure 1).
      4. Theme review: Once aggregated, we review the theme clustering identified by the unsupervised algorithm, and corroborate it against interviews, refining if required.
      Figure 1
      The algorithm clusters survey responses into themes
      The algorithm clusters survey responses into themes
      The algorithm clusters survey responses into themes

      Following refinement, there is an optional, second step to leverage a supervised ML model that can accurately assign identified themes to new data. At this stage, the theme definitions are fixed, which can be valuable in use cases with frequent data updates, such as regular employee pulse surveys. The Dialect software also can add the corresponding sentiment to each theme in an open-ended response.

      Greater confidence in the insights

      For the retailer, the model created with the Dialect text analytics library identified organizational themes that confirmed and complemented those from management interviews and focus groups. It also provided a level of rigor and detail that allowed for customized insights at a geographic and functional level across 80 summary reports.

      The text analytics work was critical to the success of a major priority for senior executives, establishing confidence in the identified strengths and challenges related to company culture. This enabled the executive team to rapidly align on organizational priorities through a series of workshops. With growing sophistication, emerging text analytics tools will increasingly unlock faster and deeper insights into employee and customer sentiment.

      The authors thank the following colleagues for their help with this expert commentary: Sarah Salzman, Anli Chen, Marion Louvel, Katrijn DePaepe, and Linda Raaijmakers.

      저자
      • Headshot of Ruud Hellemons
        Ruud Hellemons
        Director, Data Science, Amsterdam
      • Headshot of Roger Zhu
        Roger Zhu
        파트너, Boston
      문의하기
      관련 컨설팅 서비스
      • 어드밴스드 애널리틱스
      • Digital
      어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      자세히 보기
      어드밴스드 애널리틱스
      Retailers Have a Secret Weapon in AI-Powered Shopping: Trust

      US consumers would be more comfortable with AI buying on their behalf if a familiar retailer were involved.

      자세히 보기
      어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      Making Friends with Collinearity: How Driver Interactions Can Inform Targeted Interventions

      Driver analysis helps inform decisions on which drivers deserve the greatest effort.

      자세히 보기
      어드밴스드 애널리틱스
      What Business Leaders Need to Know About AI Sovereignty

      Aligning business strategy with national AI priorities is necessary to compete and scale.

      자세히 보기
      어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      Mission Possible: Driver Analysis with Collinear Variables

      Many commonly used methods have serious limitations when assessing the variable importance of collinear drivers.

      자세히 보기
      First published in 3월 2021
      태그
      • 어드밴스드 애널리틱스
      • 어드밴스드 애널리틱스(Advanced Analytics) 전문가 커멘터리
      • Digital

      프로젝트 사례

      어드밴스드 애널리틱스 A New Demand Forecasting Approach Signals a Bottom-Line Boost

      See more related case studies

      어드밴스드 애널리틱스 Blockchain-enabled Payment Flows: A Payments Company Reviews its Strategy

      See more related case studies

      Digital Better Forecasts, Less Waste Boost Grupo Bimbo’s Profitability

      See more related case studies

      베인에 궁금하신 점이 있으신가요?

      베인은 주저 없이 변화를 마주할 줄 아는 용감한 리더들과 함께합니다. 그리고, 이들의 담대한 용기는 고객사의 성공으로 이어집니다.

      급변하는 비즈니스 환경에서 살아남기 위한 선도자의 시각. 월간 Bain Insights에서 글로벌 비즈니스의 핵심 이슈를 확인하십시오.

      *개인정보 정책을 읽었으며 그 내용에 동의합니다.

      Privacy Policy를 읽고 동의해주십시오.
      Bain & Company
      문의하기 환경정책 Accessibility 이용약관 개인정보 보호 쿠키 사용 정책 Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      문의하기

      무엇을 도와드릴까요?

      • 프로젝트 문의
      • 채용 정보
      • 언론
      • 제휴 문의
      • 연사 초청
      오피스 전체보기