Skip to Content
  • 오피스

    오피스

    미주
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    유럽, 중동, 아프리카
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    아시아, 호주
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어

    지역 및 언어 선택

    글로벌
    • Global (English)
    미주
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    유럽, 중동, 아프리카
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    아시아, 호주
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    메인 메뉴

    산업

    • 우주항공, 방산 및 정부 서비스
    • 농업 관련 산업
    • 화학
    • 인프라, 건설 및 건축 자재
    • 소비재
    • 금융 서비스
    • 헬스케어
    • 산업용 기계 및 장비
    • 미디어 및 엔터테인먼트
    • 금속
    • 광업
    • 석유 및 가스
    • 제지 및 패키징 산업
    • 사모펀드
    • 사회 및 공공 부문
    • 유통
    • 기술
    • 텔레콤
    • 운송
    • 여행·여가
    • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    메인 메뉴

    컨설팅 서비스

    • Customer Experience
    • ESG
    • Innovation
    • M&A
    • 운영
    • 조직
    • 사모펀드
    • 고객 전략 및 마케팅
    • 전략
    • AI, 인사이트 및 솔루션
    • Technology
    • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    메인 메뉴

    베인 소개

    • 업무 소개
    • 베인의 신념
    • 구성원 및 리더십 소개
    • 고객 성과
    • 주요 수상 경력
    • 글로벌 파트너사
    Further: Our global responsibility
    • 다양성과 포용
    • 사회 공헌 활동
    • Sustainability
    • World Economic Forum
    Learn more about Further
  • Careers
    메인 메뉴

    Careers

    • Work with Us
      Careers
      Work with Us
      • Find Your Place
      • Our Work Areas
      • Integrated Teams
      • Students
      • Internships & Programs
      • Recruiting Events
    • Life at Bain
      Careers
      Life at Bain
      • Blog: Inside Bain
      • Career Stories
      • Our People
      • Where We Work
      • Supporting Your Growth
      • Affinity Groups
      • Benefits
    • Impact Stories
    • Hiring Process
      Careers
      Hiring Process
      • What to Expect
      • Interviewing
    FIND JOBS
  • 오피스
    메인 메뉴

    오피스

    • 미주
      오피스
      미주
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • 유럽, 중동, 아프리카
      오피스
      유럽, 중동, 아프리카
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • 아시아, 호주
      오피스
      아시아, 호주
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어
    메인 메뉴

    지역 및 언어 선택

    • 글로벌
      지역 및 언어 선택
      글로벌
      • Global (English)
    • 미주
      지역 및 언어 선택
      미주
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • 유럽, 중동, 아프리카
      지역 및 언어 선택
      유럽, 중동, 아프리카
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • 아시아, 호주
      지역 및 언어 선택
      아시아, 호주
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    메인 메뉴
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    • 산업

      • 우주항공, 방산 및 정부 서비스
      • 농업 관련 산업
      • 화학
      • 인프라, 건설 및 건축 자재
      • 소비재
      • 금융 서비스
      • 헬스케어
      • 산업용 기계 및 장비
      • 미디어 및 엔터테인먼트
      • 금속
      • 광업
      • 석유 및 가스
      • 제지 및 패키징 산업
      • 사모펀드
      • 사회 및 공공 부문
      • 유통
      • 기술
      • 텔레콤
      • 운송
      • 여행·여가
      • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    • 컨설팅 서비스

      • Customer Experience
      • ESG
      • Innovation
      • M&A
      • 운영
      • 조직
      • 사모펀드
      • 고객 전략 및 마케팅
      • 전략
      • AI, 인사이트 및 솔루션
      • Technology
      • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    • 베인 소개

      • 업무 소개
      • 베인의 신념
      • 구성원 및 리더십 소개
      • 고객 성과
      • 주요 수상 경력
      • 글로벌 파트너사
      Further: Our global responsibility
      • 다양성과 포용
      • 사회 공헌 활동
      • Sustainability
      • World Economic Forum
      Learn more about Further
  • Careers
    최근 검색어
      최근 방문 페이지

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Brief

      The New AI Stack: Speed, Scale, and Real-World ROI

      The New AI Stack: Speed, Scale, and Real-World ROI

      AWS re:Invent 2025 demonstrated how agents, fine-tuned models, and custom silicon are redefining performance and productivity for enterprises.

      글 Purna Doddapaneni, Frank Ford, and Numan Waheed

      • 읽기 소요시간
      }

      Brief

      The New AI Stack: Speed, Scale, and Real-World ROI
      en

      Amazon Web Services’ annual cloud conference this past week provided further evidence that artificial intelligence has moved from experimental tools to core enterprise infrastructure. The sessions at AWS re:Invent 2025 in Las Vegas demonstrated how cloud and AI advances are translating into cost savings and productivity gains at scale.

      For companies to capture this value, the path is twofold: strategic investment in the right technologies (agents, custom silicon, tailored models) and redesigning organizational processes around these new capabilities. The early leaders recognize that all of this adds up to a complex business transformation that must be managed effectively in order to deliver AI’s full benefits at scale.

      Reflecting on the keynotes, breakouts, and client conversations, four themes stood out.

      Agentic AI is making real progress

      AWS signaled confidence that fully autonomous AI agents are ready to deliver business value, even creating a vice president of agentic AI role.

      In an evolution from consumer AI chatbots, these enterprise agents can securely tap company data and tools, acting like a digital coworker. The new Amazon Quick Suite connects across internal wikis, documents, and applications. Employees can ask natural-language questions and receive comprehensive answers or execute tasks, all with enterprise-grade security. AWS said one customer reduced average service ticket handling time by 80%, saving 24,000 hours annually.

      For key use cases, AWS unveiled “frontier agents,” pre-built autonomous AI agents that serve as virtual team members for technical domains such as coding, cybersecurity, and DevOps. These agents can work for hours or days without intervention. By offloading routine coding, code reviews, or incident prevention, such agents can significantly boost developer productivity and consistency.

      Business leaders are eager but cautious. To deploy AI agents at scale, they need systems for clear accountability and predictable behavior. The most effective organizations will treat AI agents as a new class of employees that require training, rules, and supervision to truly become strategic assets instead of risks. Unlike traditional IT systems, most AI agents lack a unified “control tower” interface for non-technical managers. Until vendor solutions mature in areas such as agent monitoring and auditability, C-level executives should proactively invest in talent and processes that govern AI. Already, new roles in agent governance are emerging.  

      ROI is now front and center

      ROI was a common thread across AWS announcements, with new tools to improve customization, flexibility, and cost-effective scaling of AI agents and cloud systems.

      Agents. Enterprises no longer need to spend months building their agent stack from scratch. Cloud providers are offering foundations and open-source frameworks to help companies deploy AI agents faster, with flexibility to bring their preferred models or developer tools to avoid vendor lock-in.

      Models. Cloud providers are offering a buffet of models and the means to tailor them so that enterprises can get the performance they need at the right price. AWS has added 18 new open-weight, third-party AI models to its Bedrock platform over the past year, all accessible via a unified API. This selection lets enterprises experiment and swap models without rewriting code, accelerating evaluation of which model best fits a use case.

      This also makes it easier to create smaller, specialized models that outperform generic large models in specific domains. For example, reinforcement fine-tuning lets developers apply reward-based feedback to train models more simply, with reported 66% average accuracy gains over base models. Serverless model customization allows teams to launch fine-tuning jobs without provisioning infrastructure, cutting iteration cycles from months to days.

      This shift—from relying solely on giant pre-trained models to using fine-tuned, domain-specific small models—means models not only run cheaper and faster, but they can also be deployed on private infrastructure for better control and data privacy.

      Going forward, tech strategy will likely include continuously scanning new model options and having a pipeline to customize or switch models as better ones emerge.

      Silicon and hardware. AWS’ latest Trainium3 chips promise three times higher throughput per chip and four times faster model response times, with some customers reporting up to 50% cost reductions for training and inference. AWS also signaled that its next-generation chip will have greater compatibility with third-party ecosystems, hinting at more heterogeneous cloud infrastructure.

      For enterprises, advances in silicon and other hardware translate to more AI workload headroom at lower unit cost. This enables companies to tackle ambitious AI projects (like real-time vision or large-scale simulations) that previously might have been cost-prohibitive. CIOs and chief technology officers (CTOs) should evaluate how new chips and instance types can reduce AI infrastructure spending or enable new use cases.

      Beyond raw performance, AWS stressed flexibility in cost-performance trade-offs to align with business goals (whether that means cutting cloud bills, improving model accuracy, or minimizing carbon footprint). In practice, this is enabled by multiple model and chip options, and tools like Nova Forge that let companies blend proprietary data into models.

      Bringing cloud AI to you

      In a notable shift, AWS acknowledged that not all AI workloads will live in public cloud data centers. AWS’ new AI Factories bring AWS hardware and services into customers’ own data centers, allowing organizations with data sovereignty or latency requirements to access state-of-the-art AI infrastructure on their own turf while still benefiting from AWS management and support. This should appeal particularly to government clients and large enterprises in highly regulated industries, or really any company that needs to keep sensitive data in-house.

      Manage the business transformation, not just the tech

      AWS’ focus on AI-powered modernization (even citing a $2.4 trillion annual tech debt estimate across industries) demonstrates a refreshing emphasis on practical enterprise challenges. The hardest part won’t be running the tools but driving the business transformation required to benefit from AI at scale.

      Many legacy systems underpin critical business processes, so any AI-led refactoring or migration needs rigorous validation. Clients must prepare for substantial testing, and possibly retraining staff, to ensure AI-generated fixes or optimized code don’t introduce new errors or compliance issues. We suggest a cautious but proactive approach.

      • Identify low-risk, high-pain areas (say, a module that’s costly to maintain but not customer-facing) and pilot the AI modernization there to get a feel for its accuracy and limits.
      • Engage your seasoned developers and domain experts to review AI outputs—their expertise is crucial to verify accuracy.
      • Consider the people impact. Your organization might need to invest in upskilling and changing development workflows to capture even a fraction of potential efficiency gains.
      • More broadly, enterprises can only achieve full potential if they consider truly transformative ways of conducting their business using AI. The bottom line is this is a major business transformation and needs to be approached and managed as such.

      By pairing tool adoption with training and change management, executives can help their teams avoid the hype trap and instead achieve sustainable improvements. The most successful organizations are using AI to accelerate modernization and innovation while keeping humans in the loop to ensure the transformed systems truly align with business needs and risk thresholds. But the emerging leaders recognize this is only the start; the greatest opportunity lies in using AI to deliver more transformative change across the business. That’s where many leading organizations are now focusing.

      저자
      • Headshot of Purna Doddapaneni
        Purna Doddapaneni
        파트너, Dallas
      • Headshot of Frank Ford
        Frank Ford
        파트너, London
      • Headshot of Numan Waheed
        Numan Waheed
        파트너, Atlanta
      문의하기
      관련 컨설팅 서비스
      • 어드밴스드 애널리틱스
      • 정보기술(IT)
      • Digital
      최적의 솔루션 찾기
      • Artificial Intelligence
      • Data and Analytics Transformation
      • Digital Strategy
      • Digital Transformation
      • Technology Strategy and Transformation
      Artificial Intelligence Insights
      The Most Powerful AI Partnership? The CEO and CTO

      Real ROI from AI requires teaming and trust at the top.

      자세히 보기
      Artificial Intelligence Insights
      Want More Out of Your AI Investments? Think People First

      To unlock AI’s exponential productivity potential, companies must modernize workflow and workforce in tandem.

      자세히 보기
      Artificial Intelligence Insights
      Reimagining Merchandising in the Era of Agentic AI

      The future of merchandising is not better analysis, but faster, smarter execution—and agentic AI is what makes that possible.

      자세히 보기
      Artificial Intelligence Insights
      Life Sciences’ AI Momentum Requires a Workforce Redesign

      AI scalers aren't waiting for new talent—they're building it.

      자세히 보기
      Artificial Intelligence Insights
      Microsoft Ignite 2025: How Data-Driven Intelligence Powers the Age of AI Agents

      Microsoft is pushing to make AI integral to every business process and platform.

      자세히 보기
      First published in 12월 2025
      태그
      • 어드밴스드 애널리틱스
      • 정보기술(IT)
      • Artificial Intelligence
      • Artificial Intelligence Insights
      • CIO Insights
      • Data and Analytics Transformation
      • Digital
      • Digital Strategy
      • Digital Transformation
      • Technology Strategy and Transformation

      프로젝트 사례

      어드밴스드 애널리틱스 A Global Retailer Transforms Technology and Data to Conquer the Digital Future

      See more related case studies

      정보기술(IT) Aligning a new technology platform with shifting business priorities

      See more related case studies

      정보기술(IT) Bridging the Gap Between Business and Technology

      See more related case studies

      베인에 궁금하신 점이 있으신가요?

      베인은 주저 없이 변화를 마주할 줄 아는 용감한 리더들과 함께합니다. 그리고, 이들의 담대한 용기는 고객사의 성공으로 이어집니다.

      급변하는 비즈니스 환경에서 살아남기 위한 선도자의 시각. 월간 Bain Insights에서 글로벌 비즈니스의 핵심 이슈를 확인하십시오.

      *개인정보 정책을 읽었으며 그 내용에 동의합니다.

      Privacy Policy를 읽고 동의해주십시오.
      Bain & Company
      문의하기 환경정책 Accessibility 이용약관 개인정보 보호 쿠키 사용 정책 Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      문의하기

      무엇을 도와드릴까요?

      • 프로젝트 문의
      • 채용 정보
      • 언론
      • 제휴 문의
      • 연사 초청
      오피스 전체보기