Skip to Content
  • 오피스

    오피스

    미주
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    유럽, 중동, 아프리카
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    아시아, 호주
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어

    지역 및 언어 선택

    글로벌
    • Global (English)
    미주
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    유럽, 중동, 아프리카
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    아시아, 호주
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    메인 메뉴

    산업

    • 우주항공, 방산 및 정부 서비스
    • 농업 관련 산업
    • 화학
    • 인프라, 건설 및 건축 자재
    • 소비재
    • 금융 서비스
    • 헬스케어
    • 산업용 기계 및 장비
    • 미디어 및 엔터테인먼트
    • 금속
    • 광업
    • 석유 및 가스
    • 제지 및 패키징 산업
    • 사모펀드
    • 사회 및 공공 부문
    • 유통
    • 기술
    • 텔레콤
    • 운송
    • 여행·여가
    • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    메인 메뉴

    컨설팅 서비스

    • Customer Experience
    • ESG
    • Innovation
    • M&A
    • 운영
    • 조직
    • 사모펀드
    • 고객 전략 및 마케팅
    • 전략
    • AI, 인사이트 및 솔루션
    • Technology
    • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    메인 메뉴

    베인 소개

    • 업무 소개
    • 베인의 신념
    • 구성원 및 리더십 소개
    • 고객 성과
    • 주요 수상 경력
    • 글로벌 파트너사
    Further: Our global responsibility
    • 다양성과 포용
    • 사회 공헌 활동
    • Sustainability
    • World Economic Forum
    Learn more about Further
  • Careers
    메인 메뉴

    Careers

    • Work with Us
      Careers
      Work with Us
      • Find Your Place
      • Our Work Areas
      • Integrated Teams
      • Students
      • Internships & Programs
      • Recruiting Events
    • Life at Bain
      Careers
      Life at Bain
      • Blog: Inside Bain
      • Career Stories
      • Our People
      • Where We Work
      • Supporting Your Growth
      • Affinity Groups
      • Benefits
    • Impact Stories
    • Hiring Process
      Careers
      Hiring Process
      • What to Expect
      • Interviewing
    FIND JOBS
  • 오피스
    메인 메뉴

    오피스

    • 미주
      오피스
      미주
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • 유럽, 중동, 아프리카
      오피스
      유럽, 중동, 아프리카
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • 아시아, 호주
      오피스
      아시아, 호주
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    오피스 전체보기
  • 얼럼나이
  • 미디어 센터
  • 구독
  • 연락처
  • Korea | 한국어
    메인 메뉴

    지역 및 언어 선택

    • 글로벌
      지역 및 언어 선택
      글로벌
      • Global (English)
    • 미주
      지역 및 언어 선택
      미주
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • 유럽, 중동, 아프리카
      지역 및 언어 선택
      유럽, 중동, 아프리카
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • 아시아, 호주
      지역 및 언어 선택
      아시아, 호주
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    메인 메뉴
    Saved items (0)

    You have no saved items.

    관심 있는 내용을 북마크하여 Red 폴더에 저장할 수 있습니다. Red 폴더 에서 저장된 내용을 읽거나 공유해보세요.

    Explore Bain Insights
  • 산업
    • 산업

      • 우주항공, 방산 및 정부 서비스
      • 농업 관련 산업
      • 화학
      • 인프라, 건설 및 건축 자재
      • 소비재
      • 금융 서비스
      • 헬스케어
      • 산업용 기계 및 장비
      • 미디어 및 엔터테인먼트
      • 금속
      • 광업
      • 석유 및 가스
      • 제지 및 패키징 산업
      • 사모펀드
      • 사회 및 공공 부문
      • 유통
      • 기술
      • 텔레콤
      • 운송
      • 여행·여가
      • 유틸리티 및 재생가능 에너지
  • 컨설팅 서비스
    • 컨설팅 서비스

      • Customer Experience
      • ESG
      • Innovation
      • M&A
      • 운영
      • 조직
      • 사모펀드
      • 고객 전략 및 마케팅
      • 전략
      • AI, 인사이트 및 솔루션
      • Technology
      • 변화 혁신
  • Digital
  • 인사이트
  • 베인 소개
    • 베인 소개

      • 업무 소개
      • 베인의 신념
      • 구성원 및 리더십 소개
      • 고객 성과
      • 주요 수상 경력
      • 글로벌 파트너사
      Further: Our global responsibility
      • 다양성과 포용
      • 사회 공헌 활동
      • Sustainability
      • World Economic Forum
      Learn more about Further
  • Careers
    최근 검색어
      최근 방문 페이지

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Technology Report

      Updating Enterprise Technology to Scale to “AI Everywhere”

      Updating Enterprise Technology to Scale to “AI Everywhere”

      The rapid adoption of generative AI has CIOs managing significant changes in the ways that work gets done.

      글 Bharat Bansal, Stuart Sim, and Bala Parameshwaran

      • 읽기 소요시간
      }

      Report

      Updating Enterprise Technology to Scale to “AI Everywhere”
      en
      한눈에 보기
      • Companies can’t scale their AI solutions without also reshaping their technology function to enable this massive shift.
      • Taking an “AI everywhere” approach to re-architecting the tech stack is a critical, foundational step.
      • Equally important will be upgrading current ways of working to make the best use of new AI solutions, which will require bringing the discipline of software development to the adoption of AI models.

      This article is part of Bain's 2024 Technology Report.

      Explore the report

      Companies are moving beyond the experimentation phase of proofs of concept and minimum viable products, and beginning to scale up generative AI across the organization. As they do, CIOs will need to own, develop, and maintain production-grade AI solutions while efficiently delivering them at scale. At the same time, they will need to enhance their own function’s productivity with the generative AI tools they are deploying to the rest of the organization.

      This will fundamentally reshape the technology function across architecture, operating models, talent, and funding approaches, in several important ways:

      • re-architecting the entire tech stack with an “AI everywhere” approach, integrating machine learning (ML) and generative AI;
      • upgrading ways of working to incorporate AI solution development across product management, software development, operations, and support processes;
      • upskilling engineering teams to integrate, test, and scale AI systems to production grade, while using AI tools to boost engineering productivity;
      • redefining the mix of tech spending to support AI investments and infrastructure run costs, capturing the efficiencies from AI in areas like software development and service management; and
      • reviewing risk management and governance to successfully deploy and upgrade AI models.

      While all five of these processes will reshape the technology function, the first two—architecture with AI everywhere and upgrading ways of working—are the critical foundations to get right first.

      Architecture with AI everywhere

      Generative AI will affect systems across the entire enterprise.

      • Operational systems with significant unstructured data will face substantial re-architecting due to generative AI’s ability to make use of previously underutilized data sources. In our experience, the most common solution patterns for generative AI use cases in operational systems fall within the areas of content generation, knowledge management, and reporting and documentation (see Figure 1). CIOs and other tech buyers will need to decide between building or buying generative AI solutions for these uses, based on the potential competitive advantage and the cost and capability required. Currently, many companies are building or tailoring the solutions they need using foundation models because the necessary commercial solutions are not yet ready. Buying may become more practical and popular as existing software-as-a-service (SaaS) solutions incorporate generative AI.
      Figure 1
      Content creation, knowledge management, and reporting and documentation are among the most common applications of generative AI
      • Integration, workflow, and orchestration systems will need to work seamlessly with AI models to enable more complex automation workflows. Additionally, generative AI accelerates the need for modernizing enterprise architecture, such as adopting API-driven integrations and cloud-first infrastructure, to deploy generative AI solutions more effectively. Over time, workflow and orchestration systems could be powered or replaced by agentic AI that can act semi-autonomously, as that capability matures.
      • Data analytics and ML systems need to cover more unstructured data assets, as well as an AI as a service (AIaaS) platform and machine learning operations (MLOps) for reuse of common components and efficient deployment of new models. Data platform capabilities will need to be strengthened to incorporate more unstructured data sets (and treat them with the same discipline as structured ones), shared data catalogues, data versioning, and data lineage supported by data product teams. To enable use of approved models and common components (e.g., vector indexing or retrieval augmented generation) across use cases, an integrated AIaaS platform, rather than point solutions, needs to be created for each use case.

      Upgraded ways of working

      As generative AI model use cases get deployed across critical systems and complexity increases (for example, daisy-chained AI use cases), it will put further demands on collaboration, quality control, reliability, and scalability. AI models will need to be treated with the same discipline as software code by adopting MLOps processes that use DevOps to manage models through their life cycle.

      Companies should set up a federated AI development model in line with the AIaaS platform. This should define the roles of teams that produce and consume AI services, as well as the processes for federated contribution and how datasets and models are to be shared.

      Given the pace of evolution of generative AI, it is also imperative to create AI-first software development processes that allow for rapid iteration of new solutions and architectures. Agile teams need to factor in dependencies between applications, AI models, and data teams.

      Software development and service management processes should also adopt generative AI tools, including coding assistants, knowledge management, and error detection. Clear guidelines are required on how to deploy these tools, regularly monitor their impact, and manage risks.

      Many of these choices will need to be made in a landscape of rapidly evolving generative AI technologies, necessitating some no-regret moves now while maintaining flexibility to adapt. As a result, this topic will become a priority for CIOs, creating significant change in the function, far beyond what we have seen in recent years.

      • Acknowledgments

        David Crawford, leader of Bain & Company’s Global Technology practice, and a team led by Dana Aulanier, practice vice president of the Technology practice, prepared this report.

        Bain Partners Saikat Banerjee, Bharat Bansal, Gregory Callahan, David Crawford, Matthew Crupi, Arjun Dutt, Matt Eldridge, Greg Fiore, Jonathan Frick, Erin Gillman, Adam Haller, Peter Hanbury, Karen Harris, Simon Heap, Anne Hoecker, Chris Johnson, Dan Levy, David Lipman, Sandeep Nayak, Christopher Perry, Bill Radzevych, Paul Renno, Michael Schallehn, Stuart Sim, Roy Singh, Velu Sinha, Colleen von Eckartsberg, and Jue Wang; Associate Partners Jay Bhatnagar and Kenzie Haygood; Expert Partners Purna Doddapaneni, Bala Oarameshwan, and Balaji Thirumalai; and Expert Senior Manager Martin Goette wrote its chapters.  

        The authors wish to thank Senior Managers Savi Joshi and Ishan Shrestha; Manager Mike Owen; Consultants John Petrie and Grey Pierce; Associate consultants Polly Moser, Nikhil Sriram, and Michael Yoo; Practice Vice President Jennifer Ferrigan; Practice Directors Lauren Brom and Glyn Truscott; Practice Senior Manager Tarun Gupta; Bain Capability Network Senior Manager Eva Gupta; Bain Capability Network Project Leaders Isha Kanna and Vaishali Sharma; and Bain Capability Network Associate Keshary Garg for their contributions; and John Campbell, David Diamond, Jeff Bauter Engel, Mike Oneal, and David Sims for their editorial support. The authors would also like to thank the teams at Aura and ClassifAI for their support.

      Read our 2024 Technology Report

      Download the PDF Explore the report

      More from the report

      • Commercializing Innovation

      • Investing in a Shifting Market

      • Scope M&A

      • Sovereign AI

      • Top AI Functions

      • The AI Opportunity

      • Big and Small Computing

      • The AI Chip Shortage

      • The Software Cycle

      • AI in Tech Services

      • Deploying Generative AI

      • Software Development Efficiency

      • Customer Success

      • AI Everywhere

      저자
      • Headshot of Bharat Bansal
        Bharat Bansal
        파트너, London
      • Headshot of Stuart Sim
        Stuart Sim
        Alumni, New York
      • Headshot of Bala Parameshwaran
        Bala Parameshwaran
        파트너, Boston
      문의하기
      관련 산업
      • 기술
      관련 컨설팅 서비스
      • 정보기술(IT)
      • Digital
      최적의 솔루션 찾기
      • Artificial Intelligence
      Technology Report
      Quantum Computing Moves from Theoretical to Inevitable

      Quantum will likely become part of a mosaic, working with classical computing to solve big problems.

      자세히 보기
      Technology Report
      Will Agentic AI Disrupt SaaS?

      Disruption is mandatory. Obsolescence is optional.

      자세히 보기
      기술
      Why SaaS Stocks Have Dropped—and What It Signals for Software’s Next Chapter

      A sharp reset in valuations reflects AI-driven disruption, slowing retention, and a growing divide between incumbents and future winners.

      자세히 보기
      Artificial Intelligence Insights
      Want More Out of Your AI Investments? Think People First

      To unlock AI’s exponential productivity potential, companies must modernize workflow and workforce in tandem.

      자세히 보기
      Artificial Intelligence Insights
      Reimagining Merchandising in the Era of Agentic AI

      The future of merchandising is not better analysis, but faster, smarter execution—and agentic AI is what makes that possible.

      자세히 보기
      First published in 9월 2024
      태그
      • 기술
      • 정보기술(IT)
      • Artificial Intelligence
      • Artificial Intelligence Insights
      • CIO Insights
      • Digital
      • Technology Report

      프로젝트 사례

      지속 가능성 및 기업의 사회적 책임 Can Microchips Turbocharge Sustainability Improvement?

      See more related case studies

      고객 전략 및 마케팅 Increased sales productivity frees selling time and saves millions

      See more related case studies

      성과 개선 Aggressively growing an IT service provider with a high-performance culture

      See more related case studies

      베인에 궁금하신 점이 있으신가요?

      베인은 주저 없이 변화를 마주할 줄 아는 용감한 리더들과 함께합니다. 그리고, 이들의 담대한 용기는 고객사의 성공으로 이어집니다.

      급변하는 비즈니스 환경에서 살아남기 위한 선도자의 시각. 월간 Bain Insights에서 글로벌 비즈니스의 핵심 이슈를 확인하십시오.

      *개인정보 정책을 읽었으며 그 내용에 동의합니다.

      Privacy Policy를 읽고 동의해주십시오.
      Bain & Company
      문의하기 환경정책 Accessibility 이용약관 개인정보 보호 쿠키 사용 정책 Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      문의하기

      무엇을 도와드릴까요?

      • 프로젝트 문의
      • 채용 정보
      • 언론
      • 제휴 문의
      • 연사 초청
      오피스 전체보기