베인은 홈페이지 기능 및 성능 개선을 위해 쿠키를 사용합니다. 이와 관련된 더 많은 정보는 개인정보 메뉴에서 확인하실 수 있습니다. 이 웹사이트를 계속 사용하시면 쿠키 사용에 동의하신 것으로 간주됩니다. 

스냅차트

Data Transforms Predictive Maintenance

More data and better analysis techniques improved a utility’s ability to predict transformer failure.

스냅차트

Data Transforms Predictive Maintenance
en

Utilities rely on data analytics to help determine the best time to replace power transformers along the grid. Ideally, they want to extend the useful life of a transformer and replace it before it fails, to prevent an unplanned power outage. Traditional formulas consider factors like the transformer’s age and the weather, but these models are not very accurate. One North American utility sharpened its ability to predict failure rates by considering a wider set of data that includes a transformer’s load profile—that is, how the load fluctuates throughout the day—and the history of outages in the circuit where the transformer sits. Combined with more sophisticated analysis techniques, the new model was three to four times as accurate in predicting failures of the equipment most at risk. This could allow executives to make better decisions about how to improve reliability without increasing spending.

For more on how utilities use data analytics, read “How Utilities Are Deploying Data Analytics Now.”

Christophe Guille is a principal and Stephan Zech is a partner in Bain & Company’s Los Angeles office. Both work with Bain’s Global Utilities practice.

베인에 궁금하신 점이 있으신가요?

베인은 글로벌 리더들이 중요한 이슈를 해결하고 기회를 놓치지 않도록 지원합니다. 고객사와 협력하여 지속되는 변화와 성과를 창출합니다.