Skip to Content
  • Bureaux

    Bureaux

    Amérique du Nord et Amérique du Sud
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    Europe, Moyen-Orient et Afrique
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    Asie et Australie
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    Voir tous les bureaux
  • Alumni
  • Presse
  • S’abonner
  • Contacter
  • France | Français

    Sélectionnez votre région et votre langue

    Global
    • Global (English)
    Amérique du Nord et Amérique du Sud
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    Europe, Moyen-Orient et Afrique
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    Asie et Australie
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    Bookmark content that interests you and it will be saved here for you to read or share later.

    Explore Bain Insights
  • Expertises Sectorielles
    Menu principal

    Expertises Sectorielles

    • Aerospace et Défense
    • Agroalimentaire
    • Chimie
    • Infrastructures, BTP et Matériaux de Construction
    • Grande Consommation
    • Services Financiers
    • Santé
    • Engins & Equipements Industriels
    • Media et Divertissement
    • Metals
    • Mining
    • Pétrole & Gaz
    • Papier et Emballage
    • Private Equity
    • Secteur Public
    • Distribution
    • Technologie
    • Télécommunications
    • Transportation
    • Travel & Leisure
    • Utilities & Energies Renouvelables
  • Expertises Fonctionnelles
    Menu principal

    Expertises Fonctionnelles

    • Expérience Client
    • ESG
    • Innovation
    • Fusions et Acquisitions
    • Opérations
    • People & Organization
    • Private Equity
    • Sales & Marketing
    • Stratégie
    • IA, Perspectives et Solutions
    • Technology
    • Transformation
  • Digital
  • Points de Vue
  • À propos
    Menu principal

    À propos

    • Notre Activité
    • Nos Valeurs
    • Nos Collaborateurs et Notre Équipe Dirigeante
    • Notre Impact
    • Prix & Récompenses
    • Partenariats Internationaux
    • Evénements
    Further: Our global responsibility
    • Diversité et Inclusion
    • Impact Social
    • Sustainability
    • World Economic Forum
    Learn more about Further
  • Carrières
    Menu principal

    Carrières

    • Rejoignez-nous
      Carrières
      Rejoignez-nous
      • Find Your Place
      • Nos domaines d’expertise
      • Equipes multidisciplinaires
      • Étudiants
      • Stages et programmes
      • Événements de recrutement
    • La vie chez Bain
      Carrières
      La vie chez Bain
      • Blog: Inside Bain
      • Récits de carrière
      • Nos collaborateurs
      • Nos bureaux
      • Soutenir votre évolution professionnelle
      • Groupes d’affinités
      • Avantages chez Bain
    • Histoires d’impact
    • Notre processus de recrutement
      Carrières
      Notre processus de recrutement
      • Ce que vous pouvez attendre
      • Entretiens
    Trouver un poste
  • Bureaux
    Menu principal

    Bureaux

    • Amérique du Nord et Amérique du Sud
      Bureaux
      Amérique du Nord et Amérique du Sud
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • Europe, Moyen-Orient et Afrique
      Bureaux
      Europe, Moyen-Orient et Afrique
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • Asie et Australie
      Bureaux
      Asie et Australie
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    Voir tous les bureaux
  • Alumni
  • Presse
  • S’abonner
  • Contacter
  • France | Français
    Menu principal

    Sélectionnez votre région et votre langue

    • Global
      Sélectionnez votre région et votre langue
      Global
      • Global (English)
    • Amérique du Nord et Amérique du Sud
      Sélectionnez votre région et votre langue
      Amérique du Nord et Amérique du Sud
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • Europe, Moyen-Orient et Afrique
      Sélectionnez votre région et votre langue
      Europe, Moyen-Orient et Afrique
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • Asie et Australie
      Sélectionnez votre région et votre langue
      Asie et Australie
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    Menu principal
    Saved items (0)

    You have no saved items.

    Bookmark content that interests you and it will be saved here for you to read or share later.

    Explore Bain Insights
  • Expertises Sectorielles
    • Expertises Sectorielles

      • Aerospace et Défense
      • Agroalimentaire
      • Chimie
      • Infrastructures, BTP et Matériaux de Construction
      • Grande Consommation
      • Services Financiers
      • Santé
      • Engins & Equipements Industriels
      • Media et Divertissement
      • Metals
      • Mining
      • Pétrole & Gaz
      • Papier et Emballage
      • Private Equity
      • Secteur Public
      • Distribution
      • Technologie
      • Télécommunications
      • Transportation
      • Travel & Leisure
      • Utilities & Energies Renouvelables
  • Expertises Fonctionnelles
    • Expertises Fonctionnelles

      • Expérience Client
      • ESG
      • Innovation
      • Fusions et Acquisitions
      • Opérations
      • People & Organization
      • Private Equity
      • Sales & Marketing
      • Stratégie
      • IA, Perspectives et Solutions
      • Technology
      • Transformation
  • Digital
  • Points de Vue
  • À propos
    • À propos

      • Notre Activité
      • Nos Valeurs
      • Nos Collaborateurs et Notre Équipe Dirigeante
      • Notre Impact
      • Prix & Récompenses
      • Partenariats Internationaux
      • Evénements
      Further: Our global responsibility
      • Diversité et Inclusion
      • Impact Social
      • Sustainability
      • World Economic Forum
      Learn more about Further
  • Carrières
    Recherches les plus fréquentes
    • Agile
    • Digital
    • Stratégie
    Vos recherches précédentes
      Pages récemment visitées

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      How Machine Learning and Natural Language Processing Produce Deeper Survey Insights

      How Machine Learning and Natural Language Processing Produce Deeper Survey Insights

      Analyzing open-ended responses from a large group requires tools emerging from the artificial intelligence revolution.

      Par Ruud Hellemons et Roger Zhu

      • min
      }

      Article

      How Machine Learning and Natural Language Processing Produce Deeper Survey Insights
      en
      En Bref
      • When surveys of large numbers of people contain open-ended responses, traditional analytical approaches fall short.
      • However, machine learning and natural language processing can handle the statistical and contextual challenges involved.
      • That’s how a global retailer was able to derive insights about its culture and values from a survey of tens of thousands of employees around the world.

      When assessing consumer or employee sentiment, traditional approaches tend to focus on management interviews, focus groups, and numerically based survey questions as the core basis for insights. On the other hand, open-ended survey text responses have played a sparing role, given the large analytical effort involved.

      The traditional approaches were not sufficient for a global retailer. It wanted to deeply understand employee sentiment and how well employees believed the company and its leaders were living up to the stated values. To understand the root causes, the company worked with Bain to conduct an in-depth diagnostic. The assessment involved management interviews and focus groups, as well as a survey of tens of thousands of frontline and corporate employees in more than 20 languages. The scale of the assessment and the need to understand trends specific to different locations and functions required an in-depth analysis of open-ended survey responses.

      We decided to use machine learning (ML) and natural language processing (NLP) techniques to address several challenges:  

      • Selection bias: Due to the diversity of employees, the retailer wanted to ensure that insights were not solely derived from a small group of interviews and focus group participants, but instead captured a broad range of opinions and experiences.
      • Statistical significance: Given the assessment’s global reach, the insights needed to have a statistically rigorous foundation backed by the survey data.
      • Lack of nuance when analyzing open-ended text: The survey focused on complex themes around culture and ways of working. Any analysis of the free text responses required a much greater degree of analytical rigor than simple word categorizations, in order to effectively capture sentiment.
      • Complexity of language: Analyzing open-ended responses involves relatively sparse textual data. Respondents may refer to the same underlying theme using different language that contains no shared words—for instance, “I think my salary is too low” and “They are not paying me enough.” The methodology employed must be able to recognize and manage this complexity. 
      • Unique context: It has become common practice in text analytics to employ pretrained models to classify open-ended responses, based on a predetermined set of themes, and occasionally refined by manually tagging a limited set of responses as examples for new themes. However, our experience with surveys suggests that each use case has a unique context. That makes it difficult to determine a complete set of themes ahead of the survey. This is particularly true for large global enterprises, given the varying cultural nuances, company-specific language, and geographic variations. Instead, one needs an unopinionated, data-driven approach for determining themes, based on the core data set.

      The approach: Dialect text analytics

      To tackle these challenges, we deployed our Dialect text analytics software to understand, categorize, and produce visualizations for key themes from the survey responses. This software employs recent breakthroughs in language models and ML, and can stand up to the complexities of open-ended responses from large surveys, including spelling errors and very short or incomplete phrases, such as “Pay is good, management not so much.”

      Over the past few years, the “deep learning” revolution in AI and ML has made strides in text analytics, from chatbots to sentiment analysis and text generation. In certain applications, algorithms now match or even exceed human capabilities. Nevertheless, there remains room for improvement in topic modeling to understand common themes mentioned in text. That’s why Bain built a text analytics library, which enable this form of unsupervised analytics.

      The first phase in our approach involves exploratory modeling to detect themes in the data. This unsupervised topic model ensures that the underlying data informs the identification of themes, without bias toward preconceptions and unstated assumptions. This phase generally consists of four steps:

      1. Preprocessing the text: We first apply textual cleaning practices such as removing punctuation, setting words to lower case, filtering out uninformative words, and correcting spelling errors. Even with large-scale surveys, the volume of text can be relatively low for ML purposes compared with other data sources such as online reviews or social media posts. As a result, it is critical to condense the data by recoding verbs and nouns to their lemma (grouped inflectional forms of words). Finally, respondents regularly tend to provide feedback as a compact list of issues (such as “nice colleagues, long working hours”), which requires tokenization to split responses into sentence parts, so that we can attribute a single response to multiple themes.
      2. Training the language model to learn relationships between words: After preprocessing, we transform words in the texts to vectors called “word embeddings,” which convert the text information into numerical inputs and infer meaning by their contextual similarity. Here, it is critical to tailor the embeddings to the business context, as the same word may have dramatically different connotations in different companies and industries.
      3. Running theme detection using an unsupervised clustering algorithm: The unsupervised algorithm clusters the text into themes without initial human intervention, while also allowing model customizations for different survey populations or questions (see Figure 1).
      4. Theme review: Once aggregated, we review the theme clustering identified by the unsupervised algorithm, and corroborate it against interviews, refining if required.
      Figure 1
      The algorithm clusters survey responses into themes
      The algorithm clusters survey responses into themes
      The algorithm clusters survey responses into themes

      Following refinement, there is an optional, second step to leverage a supervised ML model that can accurately assign identified themes to new data. At this stage, the theme definitions are fixed, which can be valuable in use cases with frequent data updates, such as regular employee pulse surveys. The Dialect software also can add the corresponding sentiment to each theme in an open-ended response.

      Greater confidence in the insights

      For the retailer, the model created with the Dialect text analytics library identified organizational themes that confirmed and complemented those from management interviews and focus groups. It also provided a level of rigor and detail that allowed for customized insights at a geographic and functional level across 80 summary reports.

      The text analytics work was critical to the success of a major priority for senior executives, establishing confidence in the identified strengths and challenges related to company culture. This enabled the executive team to rapidly align on organizational priorities through a series of workshops. With growing sophistication, emerging text analytics tools will increasingly unlock faster and deeper insights into employee and customer sentiment.

      The authors thank the following colleagues for their help with this expert commentary: Sarah Salzman, Anli Chen, Marion Louvel, Katrijn DePaepe, and Linda Raaijmakers.

      Auteurs
      • Headshot of Ruud Hellemons
        Ruud Hellemons
        Director, Data Science, Amsterdam
      • Headshot of Roger Zhu
        Roger Zhu
        Associé, Boston
      Contactez-nous
      Expertises fonctionnelles transverses
      • Digital
      • IA, Perspectives et Solutions
      Le Point de Vue d’un Expert en Advanced Analytic
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      Voir plus
      IA, Perspectives et Solutions
      Retailers Have a Secret Weapon in AI-Powered Shopping: Trust

      US consumers would be more comfortable with AI buying on their behalf if a familiar retailer were involved.

      Voir plus
      Le Point de Vue d’un Expert en Advanced Analytic
      Making Friends with Collinearity: How Driver Interactions Can Inform Targeted Interventions

      Driver analysis helps inform decisions on which drivers deserve the greatest effort.

      Voir plus
      IA, Perspectives et Solutions
      What Business Leaders Need to Know About AI Sovereignty

      Aligning business strategy with national AI priorities is necessary to compete and scale.

      Voir plus
      Le Point de Vue d’un Expert en Advanced Analytic
      Mission Possible: Driver Analysis with Collinear Variables

      Many commonly used methods have serious limitations when assessing the variable importance of collinear drivers.

      Voir plus
      First published in mars 2021
      Mots clés
      • Digital
      • IA, Perspectives et Solutions
      • Le Point de Vue d’un Expert en Advanced Analytic

      Comment nous avons aidé nos clients

      IA, Perspectives et Solutions A New Demand Forecasting Approach Signals a Bottom-Line Boost

      Lire l’étude de cas

      IA, Perspectives et Solutions Blockchain-enabled Payment Flows: A Payments Company Reviews its Strategy

      Lire l’étude de cas

      Digital Better Forecasts, Less Waste Boost Grupo Bimbo’s Profitability

      Lire l’étude de cas

      Vous souhaitez continuer cette conversation ?

      Nous aidons des dirigeants du monde entier à matérialiser des impacts et des résultats pérennes et créateurs de valeur dans leurs organisations.

      Les points de vue de Bain : notre perspective sur des problématiques auxquelles sont confrontées les entreprises à travers le monde, envoyés chaque mois dans votre boîte de réception. 

      *J’ai lu la politique de confidentialité et j’accepte les conditions.

      Merci de lire notre politique de confidentialité.
      Bain & Company
      Contactez-nous Sustainability Accessibility Conditions d’utilisation Politique de Confidentialité Cookie Policy Mentions Légales Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      Contacter Bain

      Comment pouvons-nous vous aider ?

      • Business inquiry
      • Career information
      • Press relations
      • Partnership request
      • Speaker request
      Voir tous les bureaux