Skip to Content
  • Uffici

    Uffici

    Nord e Sud America
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    Europa, Medio Oriente e Africa
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    Asia e Australia
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    Guarda tutti gli uffici
  • Alumni
  • Media Center
  • Iscriviti
  • Contattaci
  • Italy | Italiano

    Seleziona il tuo Paese e la tua lingua

    Global
    • Global (English)
    Nord e Sud America
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    Europa, Medio Oriente e Africa
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    Asia e Australia
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    Contrassegna il contenuto che ti interessa e verrà salvato qui. Potrai leggerlo o condividerlo in seguito.

    Explore Bain Insights
  • Settori
    Menu principale

    Settori

    • Aerospazio e Difesa
    • Agribusiness
    • Chimica
    • Infrastrutture e Costruzioni
    • Beni di Largo Consumo
    • Servizi Finanziari
    • Sanità
    • Macchinari Industriali
    • Media & Intrattenimento
    • Industria Metallurgica
    • Industria Mineraria
    • Petrolio e Gas
    • Industria Cartaria e Packaging
    • Private Equity
    • Settore Sociale & Pubblico
    • Retail
    • Tecnologia
    • Telecomunicazioni
    • Compagnie Aeree & Trasporti
    • Viaggi e Svago
    • Utility e Rinnovabili
  • Servizi di Consulenza
    Menu principale

    Servizi di Consulenza

    • Customer Experience
    • ESG
    • Innovation
    • M&A and Divestitures
    • Operation
    • People & Organization
    • Private Equity
    • Sales & Marketing
    • Strategia
    • IA, Approfondimenti e Soluzioni
    • Tecnologia
    • Trasformazione
  • Digital
  • Tematiche
  • Informazioni su Bain
    Menu principale

    Informazioni su Bain

    • Che Cosa Facciamo
    • Quello in Cui Crediamo
    • Le Nostre Persone e la Leadership
    • Risultati
    • Premi e Riconoscimenti
    • Organizzazioni Globali
    Further: Our global responsibility
    • Diversità e Inclusione
    • Social Impact
    • Sustainability
    • World Economic Forum
    Learn more about Further
  • Careers
    Menu principale

    Careers

    • Work with Us
      Careers
      Work with Us
      • Find Your Place
      • Our Work Areas
      • Integrated Teams
      • Students
      • Internships & Programs
      • Recruiting Events
    • Life at Bain
      Careers
      Life at Bain
      • Blog: Inside Bain
      • Career Stories
      • Our People
      • Where We Work
      • Supporting Your Growth
      • Affinity Groups
      • Benefits
    • Impact Stories
    • Hiring Process
      Careers
      Hiring Process
      • What to Expect
      • Interviewing
    FIND JOBS
  • Uffici
    Menu principale

    Uffici

    • Nord e Sud America
      Uffici
      Nord e Sud America
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • Europa, Medio Oriente e Africa
      Uffici
      Europa, Medio Oriente e Africa
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • Asia e Australia
      Uffici
      Asia e Australia
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    Guarda tutti gli uffici
  • Alumni
  • Media Center
  • Iscriviti
  • Contattaci
  • Italy | Italiano
    Menu principale

    Seleziona il tuo Paese e la tua lingua

    • Global
      Seleziona il tuo Paese e la tua lingua
      Global
      • Global (English)
    • Nord e Sud America
      Seleziona il tuo Paese e la tua lingua
      Nord e Sud America
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • Europa, Medio Oriente e Africa
      Seleziona il tuo Paese e la tua lingua
      Europa, Medio Oriente e Africa
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • Asia e Australia
      Seleziona il tuo Paese e la tua lingua
      Asia e Australia
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    Menu principale
    Saved items (0)

    You have no saved items.

    Contrassegna il contenuto che ti interessa e verrà salvato qui. Potrai leggerlo o condividerlo in seguito.

    Explore Bain Insights
  • Settori
    • Settori

      • Aerospazio e Difesa
      • Agribusiness
      • Chimica
      • Infrastrutture e Costruzioni
      • Beni di Largo Consumo
      • Servizi Finanziari
      • Sanità
      • Macchinari Industriali
      • Media & Intrattenimento
      • Industria Metallurgica
      • Industria Mineraria
      • Petrolio e Gas
      • Industria Cartaria e Packaging
      • Private Equity
      • Settore Sociale & Pubblico
      • Retail
      • Tecnologia
      • Telecomunicazioni
      • Compagnie Aeree & Trasporti
      • Viaggi e Svago
      • Utility e Rinnovabili
  • Servizi di Consulenza
    • Servizi di Consulenza

      • Customer Experience
      • ESG
      • Innovation
      • M&A and Divestitures
      • Operation
      • People & Organization
      • Private Equity
      • Sales & Marketing
      • Strategia
      • IA, Approfondimenti e Soluzioni
      • Tecnologia
      • Trasformazione
  • Digital
  • Tematiche
  • Informazioni su Bain
    • Informazioni su Bain

      • Che Cosa Facciamo
      • Quello in Cui Crediamo
      • Le Nostre Persone e la Leadership
      • Risultati
      • Premi e Riconoscimenti
      • Organizzazioni Globali
      Further: Our global responsibility
      • Diversità e Inclusione
      • Social Impact
      • Sustainability
      • World Economic Forum
      Learn more about Further
  • Careers
    Ricerche più popolari
    • Agile
    • Digitale
    • Strategia
    La tue ricerche precedenti
      Pagine visitate

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      Rolling Out Multiarmed Bandits for Fast, Adaptive Experimentation

      Rolling Out Multiarmed Bandits for Fast, Adaptive Experimentation

      How to outperform conventional A/B testing when scaling up personalized messages and services.

      Di Joshua Mabry, Janani Sriram, e Richard Lichtenstein

      • Tempo di lettura min.
      }

      Article

      Rolling Out Multiarmed Bandits for Fast, Adaptive Experimentation
      en
      In evidenza
      • Marketing teams often lack the ability to quickly run in-market tests and scale them up.
      • Traditional A/B testing and even multivariate testing fall short for marketing that has frequent customer touches.
      • Multiarmed bandits, by contrast, dynamically steer traffic toward winning marketing messages, decreasing the cost of testing due to lost conversions.
      • Pricing experiments are a particularly useful application since retailers must balance the need for a demand model that informs long-term profits without compromising immediate profits.

      With third-party cookies on the wane, marketers rely increasingly on first-party data. Most retailers are investing heavily in platforms to capture and unify their customer data. Across the board, they have been reaping value from triggered campaigns, with simple purposes such as reminding customers to return to their abandoned carts or to consider relevant product assortments.

      Now, there’s a broader opportunity—namely, to use artificial intelligence (AI) to segment customers and automatically orchestrate aspects of their customer experience, ranging from marketing messages to retention interventions. Yet while many companies talk about creating a deeply personalized experience, few have made good use of AI.

      Worse, many have invested in advanced marketing technology stacks, but they cannot take advantage of the personalization capabilities advertised by platform providers. The main constraint: Marketing teams often lack the ability to quickly run in-market tests and scale up these systems through automation.

      Enter the multiarmed bandit

      We attribute the testing bottleneck to a reliance on traditional A/B testing approaches. These tend to be highly manual to set up, implement, and interpret. Moreover, the insights generated may be ephemeral because of shifting consumer preferences and underlying seasonality in many markets. Companies that send daily messages to customers see steep decay curves as even the highest-performing messages lose effectiveness by the third time someone sees them.

      Moreover, multivariate testing (MVT), which is a more powerful approach that can test many variables at once, also suffers from this flaw as the huge lift that it generates erodes with frequent customer touches. MVT can, however, work well for marketing touches that occur infrequently for an individual consumer, such as a subscription.

      Marketers can gain greater value by adopting adaptive experimentation approaches that more efficiently optimize customer engagement or financial metrics. These highly automated and always-on tools dynamically steer traffic toward winning marketing messages, decreasing the cost of testing caused by lost conversions. We have seen retailers realize double-digit sales increases by setting their ambitions higher and by automating the testing process using these advanced approaches. One of the most effective algorithms is the multiarmed bandit (MAB), which can be applied to use cases ranging from offer optimization to dynamic pricing. Because the MAB is always optimizing, we see persistent lift even for daily customer contacts (see Figure 1).

      Figure 1
      Multiarmed bandit has several benefits over traditional A/B or multivariate testing
      Multiarmed bandit has several benefits over traditional A/B or multivariate testing
      Multiarmed bandit has several benefits over traditional A/B or multivariate testing

      MABs provide a simple, robust solution for sequential decision making during periods of uncertainty. To build an intelligent and automated campaign, a marketer begins with a set of actions (such as which coupons to deliver) and then selects an objective (such as maximizing clickthrough rates or EBITDA for email marketing). The algorithm balances exploration (gathering more data on new actions) with exploitation (selecting actions that perform well). The goal here is to select actions that maximize the payoff and quickly converge on the best set of actions. As market conditions change, the campaigns can easily be reset to discover new winners, or in more sophisticated designs, they can be configured to continue the testing cycle indefinitely.

      Pricing experiments are a particularly useful application since retailers must balance the need for a demand model that informs long-term profits without compromising immediate profits. They thus “earn while learning” through in-market tests rather than “learn then earn.” As with any learning algorithm, it is important to be thoughtful about objective functions. For instance, an objective tied to revenue rather than profit may lead the MAB to converge on a solution with excessive discounting if the algorithm decides that deep discounts are a great way to increase revenue.

      Online service applications

      Companies often use bandit solutions to speed up experimentation and personalize the experience for users of online services. Such solutions share a few characteristics:

      • They make several actions, such as unique ads or email messages, available for different users.
      • Marketers can quickly track user response to the action.
      • Marketers can easily adapt the online system, such as when recommending a different product, at a low cost.

      In their most basic form, MABs serve as a more efficient alternative to A/B testing, adaptively allocating traffic to find a winning version of a website, email, advertisement, or other marketing action. In most digital systems, each user interaction also gathers some side information about the user and the action, known as the context. This might be information about the user’s current circumstance (cohort, location, time of day) or historically computed information (past spending, age, gender, shopping history). Contextual bandits extend the MAB framework and learn how to use this additional information to make decisions that optimize a target metric, such as profits or clickthrough rate.

      Personalization with contextual bandits

      Leading digital organizations implement contextual bandits for core services, such as promotional offer selection, in which it’s important to personalize the experience and adjust to fast-changing market conditions. The leaders also generate a steady stream of innovative content to test: new creative, imagery, promotions, and products. Constantly feeding the bandit with new ideas to test helps to avoid getting stuck with less-than-optimal results and generates new insights into customer behavior. Also, because bad ideas fail fast while winners rise to the top, companies can take bigger risks with their marketing ideas than they could in a slower-moving test cycle.

      There are a few signals that a company is ready for more advanced approaches such as a contextual bandit:

      • a robust and fast-moving experimentation program;
      • customer data that can be accurately matched to historical marketing and transactional records; and
      • product-focused teams that can optimize high-value customer touchpoints.

      Taking on the complexity of a bandit makes sense for an organization already running tests at scale, and the traditional testing generates valuable digital exhaust that can be fed into the bandit algorithm. One typically trains a contextual bandit on logged data stored in a data warehouse or other analytical data storage. Here, a company needs records of marketing actions served (such as which coupon was sent) and the resulting reward metric at the individual customer level, as well as metadata describing both the action and the user history at the time of campaign execution.

      With data in hand, a bandit model can be trained on any modern machine learning (ML) platform with model training, versioning, and serving capabilities. Usually, the value is established by building a minimum viable product algorithm operating on batches of data at a cadence that allows for careful validation by data science teams before being put into production. Personalized marketing messages can be served through web, email, or application-specific channels, and often there is some application programming interface (API) development work required to integrate the ML models with these channels. Luckily, most of the channel-specific tools include personalization APIs, which populate the personalized content within a message template, so these integration tasks are relatively straightforward.

      As with any ML/AI system, continuous monitoring and ongoing maintenance remain important, so these systems are most effective in the hands of stable, product-focused marketing teams. Looking ahead, we expect to see broader adoption of AI and adaptive experimentation techniques, from which marketers can more effectively learn and activate first-party customer data.

      Autori
      • Headshot of Joshua Mabry
        Joshua Mabry
        Alumni, Silicon Valley
      • Janani Sriram
        Alumni, Bengaluru
      • Headshot of Richard Lichtenstein
        Richard Lichtenstein
        Alumni, New York
      Contattaci
      Servizi di consulenza collegati
      • AI, Insights, and Solutions
      • Digital
      Supporto in Advanced Analytics
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      Leggi di più
      AI, Insights, and Solutions
      Retailers Have a Secret Weapon in AI-Powered Shopping: Trust

      US consumers would be more comfortable with AI buying on their behalf if a familiar retailer were involved.

      Leggi di più
      Supporto in Advanced Analytics
      Making Friends with Collinearity: How Driver Interactions Can Inform Targeted Interventions

      Driver analysis helps inform decisions on which drivers deserve the greatest effort.

      Leggi di più
      AI, Insights, and Solutions
      Four Ways Leaders Can Make AI Redesigns Stick

      As companies redesign to scale AI, these four lessons help leaders ensure their organizations actually live the new operating model.

      Leggi di più
      Supporto in Advanced Analytics
      Mission Possible: Driver Analysis with Collinear Variables

      Many commonly used methods have serious limitations when assessing the variable importance of collinear drivers.

      Leggi di più
      First published in settembre 2021
      Tags
      • AI, Insights, and Solutions
      • Digital
      • Supporto in Advanced Analytics

      Come abbiamo aiutato i nostri clienti

      A New Demand Forecasting Approach Signals a Bottom-Line Boost

      Leggi un caso di studio

      Blockchain-enabled Payment Flows: A Payments Company Reviews its Strategy

      Leggi un caso di studio

      Better Forecasts, Less Waste Boost Grupo Bimbo’s Profitability

      Leggi un caso di studio

      Vuoi continuare la conversazione?

      Aiutiamo i leader globali e le loro aziende ad affrontare problemi e a cogliere le opportunità. Sosteniamo cambiamenti e otteniamo risultati duraturi.

      Bain Insights. Le nostre idee e punti di vista sulle tematiche che le aziende globali affrontano ogni giorno, arrivano nella tua email tutti i mesi.

      *Ho letto l'Informativa sulla Privacy e accetto i termini e le condizioni.

      Si prega di leggere e accettare l’Informativa sulla Privacy
      Bain & Company
      Contattaci Sustainability Accessibility Condizioni d’uso Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      Contatta Bain

      Come posso aiutarti?

      • Business inquiry
      • Career information
      • Press relations
      • Partnership request
      • Speaker request
      Guarda tutti gli uffici