Skip to Content
  • Standorte

    Standorte

    North & Latin America
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Lisbon
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    Europe & Africa
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Düsseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • München
    • Oslo
    • Paris
    • Rome
    • Stockholm
    • Warsaw
    • Wien
    • Zürich
    Middle East
    • Doha
    • Dubai
    • Riyadh
    Asia & Australia
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    Alle Standorte Anzeigen
  • Alumni
  • Presse
  • Newsletter
  • Kontakt
  • DACH-Region | Deutsch

    Wählen Sie Ihre Region und Sprache

    Global
    • Global (English)
    North & Latin America
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    Europe, Middle East, & Africa
    • France (Français)
    • DACH-Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    Asia & Australia
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    Inhalte, für die Sie sich interessieren, werden hier gespeichert und können später gelesen oder weitergeleitet werden.

    Explore Bain Insights
  • Branchenkompetenzen
    Hauptmenü

    Branchenkompetenzen

    • Luft- und Raumfahrt, Verteidigung
    • Agrarwirtschaft
    • Chemieindustrie
    • Infrastruktur und Bauwirtschaft
    • Konsumgüter
    • Finanzdienstleistungen
    • Gesundheitswesen
    • Maschinen- und Anlagenbau
    • Medienwirtschaft
    • Metallindustrie
    • Bergbau
    • Öl und Gas
    • Papier- und Verpackungsindustrie
    • Private Equity
      Branchenkompetenzen
      Private Equity
      • Due Diligence
      • Exit Planning
      • Firm Strategy & Operations
      • Portfolio Value Creation
    • Öffentlicher Sektor und Sozialwesen
    • Einzelhandel
    • Technologie
    • Telekommunikation
    • Transportwesen
    • Reise- und Freizeitbranche
    • Versorgung und erneuerbare Energien
  • Managementkompetenzen
    Hauptmenü

    Managementkompetenzen

    • Customer Experience
    • ESG
    • Innovation
    • M&A
    • Operations
    • People & Organization
    • Private Equity
    • Sales & Marketing
    • Strategie
    • KI, Einblicke und Lösungen
    • Technologie
    • Transformation
  • Digital
  • Publikationen
    Hauptmenü

    Publikationen

    • Branchenthemen
    • Managementthemen
    • Bain-Bücher
    Alle Publikationen
    Ausgewählte Themen
    • Resilienz in der globalen Krise
    • M&A Report
    • Private Equity Podcast
    • Midyear Private Equity Report
    • Agile
    • Engineering Report
    • Digital Transformation
    • Elements of Value®
    • Firm of the Future
    • Nachhaltigkeitsstudie
    • Macro Trends
    • Future of Consumption
    • Weltwirtschaftsforum (WEF)
  • Über uns
    Hauptmenü

    Über uns

    • Was wir bieten
    • Unser Ansatz
    • Unser Team
    • Game Changer Award
    • Female Allstar Board
    • Messbare Ergebnisse (EN)
    • Auszeichnungen
    • Globale Partnerschaften
    • The Mission
    Further: Our global responsibility
    • Vielfalt & Chancengleichheit
    • Soziale Verantwortung
    • Sustainability
    Erfahren Sie mehr zu "Further"
  • Karriere
    Hauptmenü

    Karriere

    • Dein Einstieg
      Karriere
      Dein Einstieg
      • Find Your Place
      • Unsere Arbeitsbereiche
      • Unsere Teams
      • Angebote für Studierende
      • Praktika & Programme
      • Recruiting-Events
    • Arbeiten bei Bain
      Karriere
      Arbeiten bei Bain
      • Karriere Stories
      • Unsere Bainies
      • Office-Standorte
      • Weiterentwicklung
      • Affinity Groups
      • Deine Benefits
    • Impact Stories
    • Deine Bewerbung
      Karriere
      Deine Bewerbung
      • Das erwartet dich
      • Der Interviewprozess
    FIND JOBS
  • Standorte
    Hauptmenü

    Standorte

    • North & Latin America
      Standorte
      North & Latin America
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Lisbon
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • Europe & Africa
      Standorte
      Europe & Africa
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Düsseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • München
      • Oslo
      • Paris
      • Rome
      • Stockholm
      • Warsaw
      • Wien
      • Zürich
    • Middle East
      Standorte
      Middle East
      • Doha
      • Dubai
      • Riyadh
    • Asia & Australia
      Standorte
      Asia & Australia
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    Alle Standorte Anzeigen
  • Alumni
  • Presse
  • Newsletter
  • Kontakt
  • DACH-Region | Deutsch
    Hauptmenü

    Wählen Sie Ihre Region und Sprache

    • Global
      Wählen Sie Ihre Region und Sprache
      Global
      • Global (English)
    • North & Latin America
      Wählen Sie Ihre Region und Sprache
      North & Latin America
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • Europe, Middle East, & Africa
      Wählen Sie Ihre Region und Sprache
      Europe, Middle East, & Africa
      • France (Français)
      • DACH-Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • Asia & Australia
      Wählen Sie Ihre Region und Sprache
      Asia & Australia
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    Hauptmenü
    Saved items (0)

    You have no saved items.

    Inhalte, für die Sie sich interessieren, werden hier gespeichert und können später gelesen oder weitergeleitet werden.

    Explore Bain Insights
  • Branchenkompetenzen
    • Branchenkompetenzen

      • Luft- und Raumfahrt, Verteidigung
      • Agrarwirtschaft
      • Chemieindustrie
      • Infrastruktur und Bauwirtschaft
      • Konsumgüter
      • Finanzdienstleistungen
      • Gesundheitswesen
      • Maschinen- und Anlagenbau
      • Medienwirtschaft
      • Metallindustrie
      • Bergbau
      • Öl und Gas
      • Papier- und Verpackungsindustrie
      • Private Equity
      • Öffentlicher Sektor und Sozialwesen
      • Einzelhandel
      • Technologie
      • Telekommunikation
      • Transportwesen
      • Reise- und Freizeitbranche
      • Versorgung und erneuerbare Energien
  • Managementkompetenzen
    • Managementkompetenzen

      • Customer Experience
      • ESG
      • Innovation
      • M&A
      • Operations
      • People & Organization
      • Private Equity
      • Sales & Marketing
      • Strategie
      • KI, Einblicke und Lösungen
      • Technologie
      • Transformation
  • Digital
  • Publikationen
    • Publikationen

      • Branchenthemen
      • Managementthemen
      • Bain-Bücher
      Alle Publikationen
      Ausgewählte Themen
      • Resilienz in der globalen Krise
      • M&A Report
      • Private Equity Podcast
      • Midyear Private Equity Report
      • Agile
      • Engineering Report
      • Digital Transformation
      • Elements of Value®
      • Firm of the Future
      • Nachhaltigkeitsstudie
      • Macro Trends
      • Future of Consumption
      • Weltwirtschaftsforum (WEF)
  • Über uns
    • Über uns

      • Was wir bieten
      • Unser Ansatz
      • Unser Team
      • Game Changer Award
      • Female Allstar Board
      • Messbare Ergebnisse (EN)
      • Auszeichnungen
      • Globale Partnerschaften
      • The Mission
      Further: Our global responsibility
      • Vielfalt & Chancengleichheit
      • Soziale Verantwortung
      • Sustainability
      Erfahren Sie mehr zu "Further"
  • Karriere
    Häufige Suchanfragen
    • Agil
    • Digital
    • Strategie
    Vorherige Suchanfragen
      Zuletzt besuchte Seiten

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      How to Choose among Three Forecasting Models: Machine Learning, Statistical and Expert

      How to Choose among Three Forecasting Models: Machine Learning, Statistical and Expert

      Get to know their strengths and weaknesses.

      Von Yue Li

      • Min. Lesezeit
      }

      Artikel

      How to Choose among Three Forecasting Models: Machine Learning, Statistical and Expert
      en

      Forecasting methods usually fall into three categories: statistical models, machine learning models and expert forecasts, with the first two being automated and the latter being manual. Statistical methods, including time series models and regression analysis, are considered traditional, while machine learning methods, such as neural network, random forest and the gradient-boosting model, are more modern. Yet when selecting a forecasting method, the “modern vs. traditional” or “automated vs. manual” comparisons can mislead. Preferences will depend on the modeler’s training: Those with data science training will prefer machine learning models, while modelers with business backgrounds have more trust in expert forecasts. In fact, each of the three methods has different strengths and can play important roles in forecasting.

      Statistical models

      Statistical models usually have better explanatory power because they demonstrate how the forecast variable projects out or how causal factors drive the forecast variable in an explicit form. Because of the explicit form of such modeling, however, the causal relationship may be relatively simpler than what machine learning models can model.

      The highly predictable behavior of statistical models makes them suited for individual series, such as a sales forecast for a particular SKU in a store or a total sales forecast for all SKUs in the store. Since each individual series is modeled independently, parallelization of the modeling process should be considered for scaling purposes.

      Different statistical models use different assumptions so that they work fairly well on a specific pattern, such as the Croston method for an intermittent demand series or an autoregressive integrated moving average model for series that are autocorrelated. Due to the specific assumptions, applying statistical models usually requires the modeler to have deeper analytical knowledge.

      Machine learning models

      Machine learning models can model complicated relationships between the causal factors and forecast variables. They work more similarly to a black box, however, in that they cannot express such relationships in a clear form. There have been efforts to make the black box more interpretable, with the interpretability coming from ranking the importance of the factors, such as the Gini index in a random forecast model, or a unified approach, such as Shapley additive explanations.

      For individual series, machine learning models could be computationally slow and have poor performance due to overfitting. A good strategy, therefore, is to apply them to modeling a group of series together, such as sales forecasts for all SKUs in a store.

      Since this consists of one big generic model for a group, machine learning models usually have good overall performance, but they might not generate similarly strong results at individual series levels. The differences in forecast quality usually come from feature generation and model parameter tuning, which require the modeler to have a good understanding of the data and spend time on an iterative process of trial and error.

      Expert forecasts

      Experts can excel at projecting qualitative information in a forecast. In the fashion industry, for example, trend information is hard to quantify, which makes an expert’s experiences and judgment more valuable. In addition, automated forecasts assume that the future will resemble the past. When a market changes quickly, an expert who understands the market dynamics will have a more reliable sense of its future direction. Expert forecasts are subjective, however, and prone to bias. Forecast quality will hinge on the expert’s experience, the information he or she was exposed to and subjective impressions.

      The amount of data collected is one factor that helps determine the forecast method. Expert forecasts require minimal or no data. Statistical models have more data requirements as the number of observations must exceed the parameters used in the model. Machine learning models tend to work effectively only on large data sets, since the models often are more complicated—for example, a deep learning model will not forecast market growth because the data is too small and noisy for the model.

      Stability requirements of forecast results also come into play. If a company wants high consistency of results each time it reruns the model, it should first consider a statistical model. This type of model runs individual series separately, has the flexibility to remodel a portion of the series as needed and, because of the high predictability of the model form, produces more stable results. Machine learning models, by contrast, treat a group of series as one big model and are more unpredictable in form, so they must be retrained for all series and may create a less stable forecast. The differences in stability between the two types of methods, however, will depend on the particular business and the data.

      It’s essential to understand the priorities of the people using the forecast. We have seen situations in which the users had a complicated and highly automated business, so a machine learning model addressed their needs. In another situation, the companies originally said they wanted a state-of-art machine learning model, but the end users of the forecasting system either did not trust results from black box models or needed additional information from the model to make decisions. Instead of implementing a forecast system that no one will use, engaging end users in the design phase to understand what decisions they want out of the forecast, how much interpretability they need to make the decision and what type of models they are comfortable with to improve the forecasting process all raise the odds of success.

      When the situation permits, the best strategy may be to combine the strengths of different methods. We have done this in several recent demand-forecasting cases. By combining forecast results from statistical methods targeting individual series patterns with machine learning methods, which model the effect of complicated causal factors, we have significantly improved forecast accuracy for a large grocery store chain. By designing an appropriate tool to present the automated forecasting results and facilitate the forecasting adjustment process, a food company combined an expert forecast with the automated forecast to incorporate both the qualitative information and quantified results. This not only improved forecast accuracy, which led to millions of dollars in inventory cost savings and higher revenue from a reduction in lost sales, but also instilled more trust in the forecast from end users, making it easier for users to actually adopt the forecast and apply it in the business instead of producing numbers no one uses.

      Yue Li is an expert with Bain & Company’s Advanced Analytics practice. She is based in Los Angeles. 

      Ähnliche Beratungsangebote
      • Advanced Analytics
      Wie wir Sie unterstützen können
      • Demand Forecasting
      Advanced Analytics
      Classify Demand Series to Improve the Forecast

      Each class has different demand signal patterns that can help with model selection.

      Mehr erfahren
      Advanced Analytics
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      Mehr erfahren
      Demand Forecasting
      Predicting Consumer Demand in an Unpredictable World

      While it's more complicated than ever in the Covid-19 pandemic, don’t abandon forecast modeling. Just change how you do it.

      Mehr erfahren
      Advanced Analytics
      How AI Is Starting to Transform Circular Packaging

      There are 15 AI use cases companies across the value chain can use today to accelerate circularity.

      Mehr erfahren
      Advanced Analytics
      Making Friends with Collinearity: How Driver Interactions Can Inform Targeted Interventions

      Driver analysis helps inform decisions on which drivers deserve the greatest effort.

      Mehr erfahren
      First published in August 2019
      Markierungen
      • Advanced Analytics
      • Advanced Analytics
      • Demand Forecasting

      Wie wir unsere Kunden unterstützt haben

      Advanced Analytics A New Demand Forecasting Approach Signals a Bottom-Line Boost

      Kundenbeispiel lesen

      Advanced Analytics Advanced Analytics Breakthrough Lets Metals Company Optimize Yield Cost

      Kundenbeispiel lesen

      Advanced Analytics Advanced Analytics powers up UtilityCo’s reliability, and customers notice

      Kundenbeispiel lesen

      Möchten Sie mit uns in Kontakt bleiben?

      Wir unterstützen Führungskräfte weltweit, die kritischen Themen in ihrem Unternehmen zu adressieren. Gemeinsam schaffen wir nachhaltige Veränderungen und Ergebnisse.

      Bain Insights. Unsere Perspektive auf die kritischen Themen, mit denen sich international agierende Unternehmen konfrontiert sehen, finden Sie monatlich in Ihrem Postfach.

      *Ich habe die Datenschutzerklärung gelesen und akzeptiere sie.
      Bitte lesen Sie die Datenschutzerklärung und akzeptieren Sie diese.
      Bain & Company
      Contact us Sustainability Accessibility Rechtliche Hinweise Impressum Datenschutz Cookie-Richtlinie Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      Kontaktieren Sie Bain

      Wie können wir Ihnen helfen?

      • Business inquiry
      • Career information
      • Press relations
      • Partnership request
      • Speaker request
      Alle weltweiten Büros