Skip to Content
  • Uffici

    Uffici

    Nord e Sud America
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    Europa, Medio Oriente e Africa
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    Asia e Australia
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Seoul
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    Guarda tutti gli uffici
  • Alumni
  • Media Center
  • Iscriviti
  • Contattaci
  • Italy | Italiano

    Seleziona il tuo Paese e la tua lingua

    Global
    • Global (English)
    Nord e Sud America
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    Europa, Medio Oriente e Africa
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    Asia e Australia
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    Contrassegna il contenuto che ti interessa e verrà salvato qui. Potrai leggerlo o condividerlo in seguito.

    Explore Bain Insights
  • Settori
    Menu principale

    Settori

    • Aerospazio e Difesa
    • Agribusiness
    • Chimica
    • Infrastrutture e Costruzioni
    • Beni di Largo Consumo
    • Servizi Finanziari
    • Sanità
    • Macchinari Industriali
    • Media & Intrattenimento
    • Industria Metallurgica
    • Industria Mineraria
    • Petrolio e Gas
    • Industria Cartaria e Packaging
    • Private Equity
    • Settore Sociale & Pubblico
    • Retail
    • Tecnologia
    • Telecomunicazioni
    • Compagnie Aeree & Trasporti
    • Viaggi e Svago
    • Utility e Rinnovabili
  • Servizi di Consulenza
    Menu principale

    Servizi di Consulenza

    • Customer Experience
    • ESG
    • Innovation
    • M&A and Divestitures
    • Operation
    • People & Organization
    • Private Equity
    • Sales & Marketing
    • Strategia
    • IA, Approfondimenti e Soluzioni
    • Tecnologia
    • Trasformazione
  • Digital
  • Tematiche
  • Informazioni su Bain
    Menu principale

    Informazioni su Bain

    • Che Cosa Facciamo
    • Quello in Cui Crediamo
    • Le Nostre Persone e la Leadership
    • Risultati
    • Premi e Riconoscimenti
    • Organizzazioni Globali
    Further: Our global responsibility
    • Diversità e Inclusione
    • Social Impact
    • Sustainability
    • World Economic Forum
    Learn more about Further
  • Careers
    Menu principale

    Careers

    • Work with Us
      Careers
      Work with Us
      • Find Your Place
      • Our Work Areas
      • Integrated Teams
      • Students
      • Internships & Programs
      • Recruiting Events
    • Life at Bain
      Careers
      Life at Bain
      • Blog: Inside Bain
      • Career Stories
      • Our People
      • Where We Work
      • Supporting Your Growth
      • Affinity Groups
      • Benefits
    • Impact Stories
    • Hiring Process
      Careers
      Hiring Process
      • What to Expect
      • Interviewing
    FIND JOBS
  • Uffici
    Menu principale

    Uffici

    • Nord e Sud America
      Uffici
      Nord e Sud America
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • Europa, Medio Oriente e Africa
      Uffici
      Europa, Medio Oriente e Africa
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • Asia e Australia
      Uffici
      Asia e Australia
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Seoul
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    Guarda tutti gli uffici
  • Alumni
  • Media Center
  • Iscriviti
  • Contattaci
  • Italy | Italiano
    Menu principale

    Seleziona il tuo Paese e la tua lingua

    • Global
      Seleziona il tuo Paese e la tua lingua
      Global
      • Global (English)
    • Nord e Sud America
      Seleziona il tuo Paese e la tua lingua
      Nord e Sud America
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • Europa, Medio Oriente e Africa
      Seleziona il tuo Paese e la tua lingua
      Europa, Medio Oriente e Africa
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • Asia e Australia
      Seleziona il tuo Paese e la tua lingua
      Asia e Australia
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    Menu principale
    Saved items (0)

    You have no saved items.

    Contrassegna il contenuto che ti interessa e verrà salvato qui. Potrai leggerlo o condividerlo in seguito.

    Explore Bain Insights
  • Settori
    • Settori

      • Aerospazio e Difesa
      • Agribusiness
      • Chimica
      • Infrastrutture e Costruzioni
      • Beni di Largo Consumo
      • Servizi Finanziari
      • Sanità
      • Macchinari Industriali
      • Media & Intrattenimento
      • Industria Metallurgica
      • Industria Mineraria
      • Petrolio e Gas
      • Industria Cartaria e Packaging
      • Private Equity
      • Settore Sociale & Pubblico
      • Retail
      • Tecnologia
      • Telecomunicazioni
      • Compagnie Aeree & Trasporti
      • Viaggi e Svago
      • Utility e Rinnovabili
  • Servizi di Consulenza
    • Servizi di Consulenza

      • Customer Experience
      • ESG
      • Innovation
      • M&A and Divestitures
      • Operation
      • People & Organization
      • Private Equity
      • Sales & Marketing
      • Strategia
      • IA, Approfondimenti e Soluzioni
      • Tecnologia
      • Trasformazione
  • Digital
  • Tematiche
  • Informazioni su Bain
    • Informazioni su Bain

      • Che Cosa Facciamo
      • Quello in Cui Crediamo
      • Le Nostre Persone e la Leadership
      • Risultati
      • Premi e Riconoscimenti
      • Organizzazioni Globali
      Further: Our global responsibility
      • Diversità e Inclusione
      • Social Impact
      • Sustainability
      • World Economic Forum
      Learn more about Further
  • Careers
    Ricerche più popolari
    • Agile
    • Digitale
    • Strategia
    La tue ricerche precedenti
      Pagine visitate

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      Embracing Black Box Machine Learning Models in Business Operations

      Embracing Black Box Machine Learning Models in Business Operations

      How to balance accuracy with interpretability.

      Di Joshua Mabry

      • Tempo di lettura min.
      }

      Article

      Embracing Black Box Machine Learning Models in Business Operations
      en

      Machine learning (ML) has caught fire with businesses and the media as breakthroughs in computer vision and natural language processing enable machines to outperform humans at challenging tasks such as cancer diagnosis. At the same time, hardware costs have declined, and implementation has gotten easier, resulting in ML models being used to augment and replace human decision making across all industries.

      To achieve a high level of accuracy, analysts train intricate black box models on large data sets that capture complex underlying relationships. The unfortunate trade-off traditionally has come in model interpretability, but concerns about bias, safety and auditability have sparked a cascade of research in this area. Very recently, robust model interpretation methodologies, such as SHAP (Shapley additive explanation) and LIME (local interpretable model-agnostic explanations), have gained adoption in data science circles and have been incorporated into most commonly used software. One selling point is the ability to explain decisions at the level of a single prediction. This has been a massive advance for imbuing trust into predictive analytics applications and creating explanations that fit with human intuition.

      We recently built an ML pipeline to forecast demand for generic products sold in a national retail chain. This retailer suffered from significant pricing competition among nimble competitors in an emerging market and needed a way to identify products most at risk without waiting to see long-term changes in market share. Sales demand was affected by a large number of complex factors, including weather, marketing activities and substitution effects, and it needed to be predicted for hundreds of stores, each subject to different market conditions. The scale and heterogeneity of the data led us to devise an ML solution based on an ensemble of models rather than taking a more traditional forecasting approach (see Figure 1). In support of this strategy, we saw a significant increase in accuracy, including thousands of additional variables in the model, with the downside being a loss of explainability.

      Figure 1
      How one retail chain forecasts demand at scale
      How one retail chain forecasts demand at scale
      How one retail chain forecasts demand at scale

      In this context, we found it useful for the retailer to use business expertise to group the model inputs into natural hierarchies and then compute variable importance for these high-level features. This approach allowed the analysts to focus on the overall effect of catalysts such as price rather than trying to look at the raw output of our explanatory algorithm (SHAP) as provided by many off-the-shelf solutions. Analysts quickly were able to flag predicted declines in sales and the main reasons behind these declines without raising too many false alarms. That yielded both the benefit of black box model accuracy and the explanatory power usually associated with a simpler model.

      We have, however, also seen these methods give less than satisfactory results when the data was small and the models were overfit. Complex black box models can also be more sensitive to correlation among measured variables and to the effects of missing data. As with any model, measured variables are often proxies for unknown or unmeasured variables, which may have a much stronger impact on the outcome.  We highlight the use case above of identifying at-risk retail products because it met our acceptance criteria for a black box model: First, the model accuracy is significantly higher than for simpler models, and second, the cost of a wrong answer is low.

      In general, we advise caution when setting policy based on this type of post hoc analysis and remain strong advocates of a test-and-learn approach, in which these types of insights inform rigorously controlled in-market tests. Keeping the limitations in mind, we are seeing business leaders successfully scale up data-driven transformation using data science and ML methodologies. And what once was viewed as the domain of the specialist is better informing critical decisions throughout the enterprise.

      • Further reading on interpretable and automated machine learning: (click to expand)

        “AutoML.” AutoML Freiburg. https://www.ml4aad.org/automl.

        Cooman, Peter. “Demystifying Black-Box Models with SHAP Value Analysis.” The Civis Journal, May 11, 2018. https://medium.com/civis-analytics/demystifying-black-box-models-with-shap-value-analysis-3e20b536fc80.

        Hall, Patrick, Navdeep Gill, Megan Kurka, and Wen Phan. Machine Learning Interpretability with H2O Driverless AI. Mountain View, CA: H2O.ai, Inc., 2019. http://docs.h2o.ai/driverless-ai/latest-stable/docs/booklets/MLIBooklet.pdf.

        Lu, Meichen. “SHAP for Explainable Machine Learning.” November 10, 2018. https://meichenlu.com/2018-11-10-SHAP-explainable-machine-learning.

        Lundberg, Scott M., and Su-In Lee. “Consistent Feature Attribution for Tree Ensembles.” arXiv, 2017. https://arxiv.org/abs/1706.06060.

        Lundberg, Scott M., and Su-In Lee. “A Unified Approach to Interpreting Model Predictions.” Neural Information Processing Systems (NIPS), 2017. http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.

        Molnar, Christoph. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2019. https://christophm.github.io/interpretable-ml-book/

        Moore, Jason H. “Information about Automated Machine Learning.” AutoML, 2019. https://automl.info/automl.

        Murdoch, W. James, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. “Interpretable Machine Learning: Definitions, Methods, and Applications.” arXiv, 2019. https://arxiv.org/abs/1901.04592.

        Olson, Randal S., Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore. “Automating Biomedical Data Science through Tree-Based Pipeline Optimization.” EvoApplications: Applications of Evolutionary Computation, 2016. http://link.springer.com/chapter/10.1007/978-3-319-31204-0_9.

        Ribeiro Marco Tulio, Sameer Singh, and Carlos Guestrin. “‘Why Should I Trust You?’: Explaining the Predictions of Any Classifier.” KDD2016: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016): 1,135–1,144. https://doi.org/10.1145/2939672.2939778.

      Joshua Mabry is an expert and Fernando Beserra is a specialist with Bain & Company’s Advanced Analytics practice. They are based, respectively, in Silicon Valley and São Paulo.

      The authors thank Bain colleagues Diane Berry and Josef Rieder for their contributions to this commentary.

      Read More

      Advanced Analytics Expert Commentary

      Success with advanced analytics requires both technical know-how and a thoughtful approach. In this series, Bain's experts offer practical advice on some of the most common data issues.

      Autori
      • Headshot of Joshua Mabry
        Joshua Mabry
        Alumni, Silicon Valley
      Contattaci
      Servizi di consulenza collegati
      • AI, Insights, and Solutions
      Come possiamo aiutarti
      • Experimentation at Scale
      Supporto in Advanced Analytics
      Successful A/B Tests in Retail Hinge on These Design Considerations

      Following a small set of guidelines will result in more meaningful and trustworthy results.

      Leggi di più
      Supporto in Advanced Analytics
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      Leggi di più
      AI, Insights, and Solutions
      Want More Out of Your AI Investments? Think People First

      To unlock AI’s exponential productivity potential, companies must modernize workflow and workforce in tandem.

      Leggi di più
      Supporto in Advanced Analytics
      Making Friends with Collinearity: How Driver Interactions Can Inform Targeted Interventions

      Driver analysis helps inform decisions on which drivers deserve the greatest effort.

      Leggi di più
      Experimentation at Scale
      Predictive Forecasting or Scheduling

      By analyzing current and historical data, companies can better predict future demand or supply, as well as functional and operational metrics.

      Leggi di più
      First published in agosto 2019
      Tags
      • AI, Insights, and Solutions
      • Experimentation at Scale
      • Supporto in Advanced Analytics

      Come abbiamo aiutato i nostri clienti

      An Airline’s Ancillary Revenue Soars Thanks to Test-and-Learn Experimentation

      Leggi un caso di studio

      Direct marketing excellence through experimental design

      Leggi un caso di studio

      Analytics guide an entertainment company's growth strategy

      Leggi un caso di studio

      Vuoi continuare la conversazione?

      Aiutiamo i leader globali e le loro aziende ad affrontare problemi e a cogliere le opportunità. Sosteniamo cambiamenti e otteniamo risultati duraturi.

      Bain Insights. Le nostre idee e punti di vista sulle tematiche che le aziende globali affrontano ogni giorno, arrivano nella tua email tutti i mesi.

      *Ho letto l'Informativa sulla Privacy e accetto i termini e le condizioni.

      Si prega di leggere e accettare l’Informativa sulla Privacy
      Bain & Company
      Contattaci Sustainability Accessibility Condizioni d’uso Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      Contatta Bain

      Come posso aiutarti?

      • Business inquiry
      • Career information
      • Press relations
      • Partnership request
      • Speaker request
      Guarda tutti gli uffici