Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • 検索

  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • Blog: Inside Bain
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
    • オフィス
    • Japan | 日本語
    • Saved items  (0)
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • キャリア
  • ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
  • ベインでの体験
      • Blog: Inside Bain
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
  • Impact Stories
  • 採用情報
      • 採用プロセス
      • 面接内容
FIND JOBS
      人気検索キーワード
      • デジタル
      • 戦略
      前回の検索
        最近訪れたページ

        Content added to saved items

        Saved items (0)

        Removed from saved items

        Saved items (0)
        Back to All Case Studies

        Helping a global plastics manufacturer reduce its use of a pricey, acidic ingredient by 20%

        Helping a global plastics manufacturer reduce its use of a pricey, acidic ingredient by 20%

        A global plastics manufacturer was looking to reduce its consumption of a high-cost ingredient called acetic acid. In just six weeks, Bain helped them implement a new, machine learning-powered process to optimize yields. Bain then handed over that solution to ChemicalsCo so its teams could continue to use it.

        These teams helped the client optimize its yield

        Consultants conducted the initial due diligence and confirmed this project was largely a question of data science—if the Bain team could gather the right data from the client’s locations, they could create an algorithm to optimize yields.

        These teams helped the client optimize its yield

        Consultants conducted the initial due diligence and confirmed this project was largely a question of data science—if the Bain team could gather the right data from the client’s locations, they could create an algorithm to optimize yields.

        AI, Insights, & Solutions (AIS)

        Data scientists used a combination of machine learning and engineering knowledge to identify the key factors in acetic acid loss. This allowed Bain to train a simple, transparent algorithm to identify the factors behind periods of low and high consumption, and thus resolve the problem.

        These teams helped the client optimize its yield

        Consultants conducted the initial due diligence and confirmed this project was largely a question of data science—if the Bain team could gather the right data from the client’s locations, they could create an algorithm to optimize yields.

        Expert Consulting

        Bain chemicals experts advised on chemical reactions at the manufacturing plants. They also provided guidance on connecting the Bain team’s analyses to the actual model output.

        These teams helped the client optimize its yield

        Consultants conducted the initial due diligence and confirmed this project was largely a question of data science—if the Bain team could gather the right data from the client’s locations, they could create an algorithm to optimize yields.

        General Consulting

        Consultants conducted the initial diligence to scope the project, coordinated with the client’s leadership, assessed the reliability of the product, and more.

        These teams helped the client optimize its yield

        Consultants conducted the initial due diligence and confirmed this project was largely a question of data science—if the Bain team could gather the right data from the client’s locations, they could create an algorithm to optimize yields.

        Product, Practice, and Knowledge (PPK)

        The knowledge team helped scope the engagement and shared examples from Bain’s prior chemicals work. They provided fresh market trends, topical insights, and unique perspectives to help shape the approach. After the case, they captured the full breadth of work and codified it for future case teams.

        These teams helped the client optimize its yield

        Consultants conducted the initial due diligence and confirmed this project was largely a question of data science—if the Bain team could gather the right data from the client’s locations, they could create an algorithm to optimize yields.

        • AI, Insights, & Solutions (AIS)

          Data scientists used a combination of machine learning and engineering knowledge to identify the key factors in acetic acid loss. This allowed Bain to train a simple, transparent algorithm to identify the factors behind periods of low and high consumption, and thus resolve the problem.

        • Expert Consulting

          Bain chemicals experts advised on chemical reactions at the manufacturing plants. They also provided guidance on connecting the Bain team’s analyses to the actual model output.

        • General Consulting

          Consultants conducted the initial diligence to scope the project, coordinated with the client’s leadership, assessed the reliability of the product, and more.

        • Product, Practice, and Knowledge (PPK)

          The knowledge team helped scope the engagement and shared examples from Bain’s prior chemicals work. They provided fresh market trends, topical insights, and unique perspectives to help shape the approach. After the case, they captured the full breadth of work and codified it for future case teams.

        Background

        In the years leading up to this engagement, ChemicalsCo’s consumption of acetic acid had risen. This ingredient has become one of their largest variable costs and its unpredictability was hurting the company’s profitability. As leadership looked to grow margins, they hired Bain, which assembled a case team of consultants, data scientists, chemicals experts, and process engineers.

        ChemicalsCo’s engineers were already aware that whenever the company used more acetic acid, the quality of its chemical products tended to be lower. Meaning, these two factors were inversely correlated. The more they could reduce acetic acid use, the better. But beyond that relationship, understanding the specific parameters that caused the acid use fluctuations was a challenge.

        The plan

        Bain addressed the acetic acid question as part of what's known as a “full potential” initiative—analyzing the client’s entire company to determine what it ought to be able to achieve, and the levers it could pull to get there. This required looking at ChemicalsCo’s operations which spanned the US, Europe, the Middle East, Africa, and Asia-Pacific, and searching for key acid use variables and potential predictors. If Bain’s data scientists and experts could isolate those variables, they could build a case for developing a machine learning model to turn the problem into an equation.

        Bain teams learned that one manufacturing site was using much more acetic acid than others, and the spike in usage had occurred right after the site had expanded. They visited to understand why.

        • What was ChemicalsCo’s starting point?

        • What was the full potential the company could achieve if the problem was fixed?

        • What benchmarks and historical data already existed?

        • What variables and predictors were correlated with increased acid use?

        • How could the client scale a local ML approach across many sites?

        • What was the most efficient path forward?

        The approach

        Bain’s investigation into that high-usage site supplied the variables the data science team needed. They applied a combination of machine learning and engineering knowledge to train a simple, transparent algorithm to identify the factors that caused periods of low and high acid consumption. This, however, proved more complicated than it at first appeared.

        The team had to clean up and standardize the site’s data, build a baseline model with all variables, construct a causal model, and run t-tests to ensure those measures were statistically significant. Once the model was working, they prepared it for handoff so the client teams could use it themselves.

        The insights from that model were enough for ChemicalsCo to immediately act upon. Usage at the problem site fell and the company was able to apply that formula to sites around the world.

        The results

        Within just four weeks, Bain teams solved the mysterious, persistent, and expensive use of acetic acid. The client was able to reduce its global use of that ingredient by 20%, for significant cost savings and the higher margins leadership had hoped for.

        -20%

        consumption of the costly ingredient, acetic acid

        +3

        additional machine learning use cases identified at the same site

        Offices involved

        北米・南米

        • Atlanta
        • Austin
        • Bogota
        • Boston
        • Buenos Aires
        • Chicago
        • Dallas
        • Denver
        • Houston
        • Los Angeles
        • Mexico City
        • Minneapolis
        • Monterrey
        • Montreal
        • New York
        • Rio de Janeiro
        • San Francisco
        • Santiago
        • São Paulo
        • Seattle
        • Silicon Valley
        • Toronto
        • Washington, DC

        ヨーロッパ・中東・アフリカ

        • Amsterdam
        • Athens
        • Berlin
        • Brussels
        • Copenhagen
        • Doha
        • Dubai
        • Dusseldorf
        • Frankfurt
        • Helsinki
        • Istanbul
        • Johannesburg
        • Kyiv
        • Lisbon
        • London
        • Madrid
        • Milan
        • Munich
        • Oslo
        • Paris
        • Riyadh
        • Rome
        • Stockholm
        • Vienna
        • Warsaw
        • Zurich

        アジア・オーストラリア

        • Bangkok
        • Beijing
        • Bengaluru
        • Brisbane
        • Ho Chi Minh City
        • Hong Kong
        • Jakarta
        • Kuala Lumpur
        • Manila
        • Melbourne
        • Mumbai
        • New Delhi
        • Perth
        • Shanghai
        • Singapore
        • Sydney
        • Tokyo

        Offices involved

        • Chicago
        • Houston
        • Amsterdam
        • Kuala Lumpur
        • New Delhi
        Further Reading

        Related Case Studies

        How Bain used AI to power Athena Pathway’s bid for victory in inaugural Women’s America’s Cup

        Using AI innovation to enhance sailing performance.

        アナリティクス、データ、リサーチ テクノロジー&エンジニアリング
        Helping a national restaurant franchise open 1.5x more locations

        And identify 3x more high-potential locations.

        アナリティクス、データ、リサーチ テクノロジー&エンジニアリング
        Tata Steel helps India’s tens of millions of homebuilders

        Tata Steel helps India’s tens of millions of homebuilders

        アナリティクス、データ、リサーチ テクノロジー&エンジニアリング
        Bain launches a program to upskill all employees on ESG issues

        By partnering with major universities.

        アナリティクス、データ、リサーチ タレントマネジメント&人事

        ニュースレターへのご登録

        ニュースレターにて、ベインに関する情報や、採用情報をお届けします(英語版)

        登録
        Bain & Company
        お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

        © 1996-2026 Bain & Company, Inc.