Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • Blog: Inside Bain
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      論説

      How Telcos Can Seize an Advantage in Ethical AI

      How Telcos Can Seize an Advantage in Ethical AI

      Emerging regulations worldwide will require companies to think harder about what AI can and can’t do across critical aspects of their operations.

      著者:Velu Sinha, Catalina Fajardo, and Saikat Banerjee

      • min read
      }

      論説

      How Telcos Can Seize an Advantage in Ethical AI
      en
      概要
      • A forthcoming landmark European Union policy on artificial intelligence has increased the urgency for telecommunications companies to develop an ethical AI strategy.
      • This also presents an opportunity for fast-moving carriers to differentiate themselves in the eyes of consumers, employees, and investors.
      • Leading telcos start by weighing the most promising sources of AI value against their complexity, mobilizing to achieve the ambition, and investing in workflow automation.

      There has been a great deal of activity around the globe in recent months on ethical artificial intelligence (AI). A forthcoming landmark policy in the European Union will likely have significant ramifications across industries, including telecommunications. Hyperscalers and innovators are revising their ethical AI principles and mobilization strategies. Financial investors are asking their portfolio companies to report how they plan to tackle ethical AI, part of investors’ risk management amid a larger push on environmental, social, and governance (ESG) initiatives and diversity, equity, and inclusion. Similarly, auditors are increasingly expected to include ethical AI risks as part of their evaluations.  

      Leading telecom executives recognize the growing urgency to develop an ethical AI strategy. It’s not only a matter of complying with expected regulatory requirements (and avoiding potentially significant financial penalties). Ethical AI also represents a chance for fast-moving carriers to differentiate themselves in the eyes of consumers, employees, and investors, as well as to advance the company’s business and ESG strategies. Given the complexity of delivering ethical AI across functions, and the importance of data and AI to succeed in a fast-changing industry, leaders would be wise to start mobilizing now.

      Ethical AI risks

      Over the years, AI has gone from strength to strength. Through AI, complex scientific problems such as protein folding have finally been solved. Innovative, general-purpose machine learning algorithms such as AlphaZero within hours surpass the best computer systems in their specific domains. Fueled by abundant data, computing power, and software democratization, AI has become ubiquitous for companies across all industries. In the telecom industry, early adopters have seen significant improvements in return on investment related to such core activities as network planning and churn reduction.

      Yet there are inherent risks associated with the powerful capabilities of AI. Take, for example, unwanted bias. The key strength of machine learning technologies—the ability to independently learn from observations—implies that any pattern in the observed data influences the results of these algorithms. Typically, this is exactly what developers want AI to do. Find, for instance, the next best cross-selling offer for an individual telecom customer, based on insights from piles of data gleaned from the network, social media, or customer services.

      The problem is that this underlying data can be inherently biased in ways that are often unknown. These biases are often detected and amplified by machine learning algorithms, resulting in unwanted decision outcomes. For example, when tasked to identify the recruiting candidates with the best chances to succeed in an open position, AI technologies have tended to shortchange women. Why? The data used in training the algorithms is often dominated by profiles of successful men.

      There are many more well-documented examples of what can go wrong with AI. Ethical AI has quickly evolved into a complex management challenge for executives and boards, as they wrestle with how best to scale AI in their organizations given the goals of:

      • Equality. No harmful unintended bias against particular groups of people based on, for example, gender, race, ethnicity, age, or disability
      • Robustness. Cybersecure and resilient AI systems and data value chains
      • Privacy. Data governance aligned with consumers’ rights and interests
      • Explainability. Clear understanding of (repeatable) results from AI systems
      • Transparency. Disclosure of when AI is used and of the algorithms’ underlying operating principles

      Why care now

      The issues associated with ethical AI are complex, and so are the solutions. Why should telecom business leaders and executive boards pay attention to this topic now?

      First, AI is everywhere, changing fast, and critical for telcos to master. Narrowly focused AI has evolved into a core capability that can improve competitiveness for companies in all industries. Software democratization fuels the pace of innovation and proliferation of AI use cases in products and services. Exponential growth of multifaceted data assets further propels AI algorithm capacities, notably in the telecom industry, given its many customer and Internet of Things touchpoints. Frequent training and retraining of AI models increases their exposure to new ethical risks. 

      Second, AI is receiving increased scrutiny from regulators worldwide. Policymakers are introducing unprecedented legal requirements that will affect telcos as critical infrastructure players. One example is the proposed EU AI Act, which suggests a fine structure for violating responsible AI guidelines and could imply, in theory, noncompliance fines of up to 6% of annual revenue. Different regulatory approaches across regions are resulting in fragmentated compliance strategies and unclear timelines, and the potential consequences of policy changes are contributing to uncertainty among business leaders.

      Third, company stakeholders are becoming more sensitive to the issue. As AI increasingly affects day-to-day life, and incidents of unintended consequences become known, many customers’ trust is faltering. Employees are also questioning the role of their companies in ensuring “fair” use of AI. Investors are asking for sustainable business strategies and clear roadmaps for bridging digital and ESG transformations.

      Lastly, AI is growing more complex. Digitalization is driving a data paradigm shift from select internal silos to massive crowdsourcing of data powering new products and services. The AI delivery stack is delayering; more data and software vendors are involved in AI production. Control points are blurring, making accountability across organizations less clear. There’s a growing need to establish distinct responsibilities with AI delivery partners and system integrators. More companies are considering adopting enterprise AI governance solutions to assist in automating compliance.

      Implications for telcos

      While more companies, including some telcos, have been highlighting their emphasis on ethical AI in public statements, few have really begun to translate those goals into concrete strategies, governance systems, or operating guidelines. No one has all the answers yet, but telecom executives recognize they can’t wait to act until they have a “perfect” solution for the entire organization. Leading companies start by focusing on four areas.

      1. Value at stake. Most leaders understand the importance of directing their ethical AI capabilities to use cases with the highest potential value. However, for many boards, the value associated with ethical AI (both risks and upside potential) is unclear. What will companies legally be required to do? What are the costs of noncompliance? What do customers, shareholders, employees, and business partners expect? Can firms differentiate themselves through leadership in ethical AI? Think of talent that turns away from large tech companies because of concerns about the use of data and AI.
      2. Sources of value. Given the many potential use cases for AI, it’s not always immediately clear where executives should focus first. Are they aware of all of the instances where AI is currently being deployed or considered within the organization? Where is the highest value at stake, and how complex will it be to deliver? Some telcos are prioritizing ethical AI investments by mapping their potential use cases, organized by the value at stake, complexity to deliver, and annual financial impact (see Figure 1).
      Figure 1
      How one telco assessed the value and complexity of critical AI use cases

      For example, using AI in talent recruiting will likely be considered a potentially “high risk” use case under the EU AI Act, invoking a series of regulatory requirements. The same goes for the management of “critical infrastructure,” which might well include parts of telecom networks. It remains to be seen how the AI Act will define an acceptable level of transparency, including the level of testing mandated for various AI activities to ensure they’ve built in adequate ethics. 

      1. How to mobilize. Enacting an ethical AI mission requires the expertise of employees across a wide variety of functions, including technology, strategy, legal, risk and compliance, marketing, and public affairs. Where should companies start small, learn, and then scale? Telecom executives need to think hard about evolving their operating model, allowing frontline leaders to easily tap this expertise while not undermining speed of innovation or time to market. Specialized talent will need to be recruited in some areas, but many more existing employees will need training to identify opportunities to deploy AI in business operations and to manage the risks that accompany those efforts. 
      2. Automation. Using fast-paced AI at scale while aligning day-to-day activities with ethical principles requires strong automation of workflows. Which governance software systems can companies employ to ensure ethical AI quality with minimal or no human oversight? What do companies need to do themselves, and what can be asked of technology delivery partners? How can companies seamlessly and efficiently react to AI policy and technology changes across multiple markets?

      Ultimately, using AI technologies in line with ethical principles is a rapidly evolving capability at the core of digital transformations, ESG ambitions, and the tectonic shifts disrupting the telecom industry. Although regulations trigger the need for carriers to act now and start addressing the complex delivery challenge, doing this well and fast can also earn the trust of consumers, employees, and investors and turn ethical AI into a competitive advantage for telcos.

      The authors wish to thank Lukas Droege for his contributions to this article.

      著者
      • Headshot of Velu Sinha
        Velu Sinha
        パートナー, Austin
      • Headshot of Catalina Fajardo
        Catalina Fajardo
        パートナー, Bogota
      • Headshot of Saikat Banerjee
        Saikat Banerjee
        パートナー, Bengaluru
      関連業種
      • 通信
      コンサルティングサービス
      • Artificial Intelligence
      Artificial Intelligence Insights
      Accelerating Autonomous Networks: A Reality Check for Telcos

      Early leaders are using AI to reengineer core business processes, but cultural and technological hurdles remain.

      詳細
      Artificial Intelligence Insights
      Four Ways Leaders Can Make AI Redesigns Stick

      As companies redesign to scale AI, these four lessons help leaders ensure their organizations actually live the new operating model.

      詳細
      通信
      Shift to Vertical: David Haines, Group CEO, Flora Food Group

      What does it take to stay connected to your customers when scale and complexity threaten to pull you away? 

      詳細
      Artificial Intelligence Insights
      What Business Leaders Need to Know About AI Sovereignty

      Aligning business strategy with national AI priorities is necessary to compete and scale.

      詳細
      Artificial Intelligence Insights
      The 2026 Retail Executive Agenda

      Here are letters to the C-suite to help strengthen strategy, catalyze collaboration, and expand value creation in the AI age.

      詳細
      First published in 12月 2022
      Tags
      • Artificial Intelligence
      • Artificial Intelligence Insights
      • 通信

      クライアント支援事例

      サステイナビリティ、社会貢献 Orange Charts a Bold Course to 2030 and Beyond

      ケーススタディを見る

      顧客戦略、マーケティング Customer segmentation aligns TelecomCo's growth strategy with consumers' needs

      ケーススタディを見る

      業績改善 Transforming a telecommunications giant

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス