Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • Blog: Inside Bain
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      What’s Missing from Your AI Strategy? Strategic Clarity.

      What’s Missing from Your AI Strategy? Strategic Clarity.

      Our AI Deployment Matrix solves that by providing an essential framework to guide your AI transformation.

      著者:Eric Sheng

      • min read
      What’s Missing from Your AI Strategy? Strategic Clarity.

      As boardroom conversations and C-suite discussions increasingly focus on how to become “AI-first,” it’s clear that not all AI is created equal. Tools are proliferating, but they vary widely in their intended uses and potential impact. That not only creates confusion about what to deploy where, when, and how, it also threatens to delay or even derail your AI transformation. We developed the AI Deployment Matrix to ensure that doesn’t happen.

      The AI Deployment Matrix is designed to help you lead with clarity and invest with purpose by helping you distinguish between productivity and automation vs. true transformative reinvention. This two-by-two model is both simple and powerful. It enables you to classify how you’re deploying AI, and how those deployments are (or aren’t) moving your company forward.

      Each of the four archetypes has its own strengths, limitations, and strategic implications. Here’s a quick look (see Figure 1).

      Figure 1
      Key characteristics of each AI Deployment Matrix archetype

      Quadrant 1: Personal productivity AI

      Odds are very good you’re already familiar with this category—Personal productivity AI encompasses the chat-based AI assistants that help with writing, research, ideation, coding, summarization, image interpretation, and visualization generation. They’re typically easy to adopt, require little to no integration, and boost productivity on isolated tasks.

      They also serve another purpose: They catalyze cultural change by fostering AI fluency. As employees use these tools for various tasks on a trial-and-error basis, they begin to develop a hands-on intuition for how to get the most from the technology. That, in turn, lays the groundwork for advancing to subsequent quadrants, culminating in quadrant 4, which is where true organizational transformation awaits. Therefore, leaders should encourage widespread experimentation with personal productivity AI, particularly among nontechnical employees, because it prepares the company to adopt, adapt, and scale with AI.

      Quadrant 2: Amplified intelligence AI

      This quadrant comprises AI assistants that are tailored to enterprise data, individual roles, and individual workflows. They empower people with context-rich intelligence by integrating multiple sources and offering guidance in ways that expand an employee’s ability to decide and act.

      Amplified intelligence AI spans a wide range of use cases, from HR and IT policy guidance to research and data analysis. The common thread is tailoring: The assistant taps into enterprise knowledge and workflow context to deliver relevant, actionable outputs. Quadrant 2 augments but does not replace human judgment. The employee remains in control but with a reduced manual burden. Workflows that would otherwise be manual, incomplete, or unscientific become rigorous, data-driven processes. This not only results in faster and smarter decisions at the individual level but also boosts the intelligence of the enterprise as a whole.

      Quadrant 3: Embedded assistant AI

      Increasingly, enterprise resource planning and customer relationship management (CRM) vendors are embedding AI capabilities directly into their enterprise software suites. This AI functionality is often configurable by users and designed to automate discrete tasks, such as autofilling records, drafting responses, routing workflows, and flagging exceptions.

      This enables companies to achieve a certain level of scale with relatively little adoption friction: The AI capabilities ride on top of tools that employees already use, facilitating quick uptake with little or no training. But that ease of adoption is a double-edged sword, in that, by adhering to existing workflows they often optimize the status quo rather than redefine it. Nonetheless, while falling short of true transformation, embedded assistant AI can be a highly effective part of your AI strategy, especially when applied to tasks that benefit from consistency, speed, and low error tolerance.

      Quadrant 4: Digital worker AI

      This quadrant represents the point at which AI shifts from a supportive role to an operational partner that is capable of orchestrating and executing complex workflows across teams, departments, and systems. Unlike the lighter forms of AI described above, digital worker AI is about much more than tools alone; it represents the epicenter of enterprise transformation. As such, few if any organizations are equipped to reach quadrant 4 alone. You will almost certainly need third-party expertise to address the interconnected technology, process redesign, and change management issues that enable a successful transformation.

      That’s because the systems that comprise digital worker AI are either highly customized or bespoke, purpose-built on a foundation of tailored logic, deeply integrated data pipelines, and cross-functional process mapping. They can execute entire workflows, make decisions, manage exceptions, and drive system-level outcomes. In essence, they act as autonomous execution engines.

      Achieving that level of deployment demands close collaboration among AI builders (be they internal teams or third-party vendors, as we discuss below), process owners, IT leaders, and experienced advisers. It often requires upfront and ongoing investment in infrastructure, integration, and change enablement. It’s challenging, but the payoff is significant—namely, full automation of high-value work traditionally performed by humans, driving end-to-end execution with greater speed, accuracy, and consistency than people alone can achieve.

      It's in the move to quadrant 4 that the AI Deployment Matrix is particularly helpful because it ensures that you are investing in the AI tools and capabilities that map to your long-term strategy. Quadrant 4 represents a major shift from scattered point solutions to the foundation of a new operating model that redefines how work gets done and how value is created.

      What the AI Deployment Matrix is—and isn’t

      AI tools alone won’t transform the organization. Leaders must assess whether the tools they’re deploying simply improve efficiency or fundamentally reshape how the company operates. Therefore, it’s important to note that the AI Deployment Matrix is not a product taxonomy but rather a way to describe the capabilities of a particular deployment—for instance, who is empowered, how deeply, and to enable which outcomes. It helps leaders connect the dots between AI deployments and strategic ambition.

      Given the rapid pace of AI advancement, it’s likely that many AI deployments will shift to the lower right of the AI Deployment Matrix, becoming more deeply integrated and making a greater strategic impact as users and technology vendors alike set their sights on quadrant 4. We see signs of this already as many chatbot vendors now offer data connectors that integrate with corporate databases and document repositories that are powered by no-code, customizable assistants with workflow and action capabilities. Similarly, CRM and foundation model providers now send engineers to tailor their software to a client’s needs, sometimes writing bespoke application code to address specific pain points.

      What agentic AI is—and isn’t

      There is enormous buzz around AI agents—and for good reason: They promise major advances in productivity, autonomy, and scale. As such, it’s reasonable to ask whether the deployment of an AI agent qualifies you as being in quadrant 4.

      Not necessarily. Agents don’t guarantee transformation. In fact, depending on the agent in question, it could qualify as a quadrant 1, 2, 3, or 4 deployment. There is a considerable spread, for example, between an agentic research assistant that helps an individual employee gather information, synthesize findings, and generate insights (quadrant 1) vs. an agent that’s deeply integrated across systems, orchestrating/executing end-to-end workflows and autonomously driving business outcomes (undeniably quadrant 4). Many agents fall somewhere in between.

      The AI Deployment Matrix helps you cut through the hype and understand where any “next big thing”—be it agents, copilots, or autonomous enterprises—fits with your strategy so that you don’t blindly chase trends but remain focused on your transformation goals.

      How the AI Deployment Matrix serves AI product companies

      As valuable as the AI Deployment Matrix is in helping enterprise leaders make critical deployment decisions, it’s equally useful for AI product companies as they clarify product strategy, sharpen positioning, and better serve customers. It provides a strategic lens for product design, differentiation, and go-to-market (GTM) execution, helping product companies stand out in a market flooded with tools, buzzwords, and hype.

      The AI Deployment Matrix enables vendors to anchor customer conversations and differentiate between tactical utility and strategic impact. Are you empowering individual users (quadrant 1)? Amplifying human intelligence with personalized, context-aware support (quadrant 2)? Leveraging embedded AI within enterprise software (quadrant 3)? Or delivering transformational capabilities that require workflow reinvention (quadrant 4)?

      Understanding your current quadrant and your trajectory across the AI Deployment Matrix can help guide product roadmap decisions and support more targeted customer discovery. Each quadrant implies different levels of integration complexity, deployment support, and customer expectations. This directly impacts your:

      • Engineering resourcing (e.g., building connectors vs. delivering bespoke solutions)
      • GTM strategy (e.g., product-led vs. sales-led motion)
      • Customer readiness (e.g., IT integration capability, change management appetite)
      • Support model (e.g., self-serve vs. high-touch deployment)

      The AI Deployment Matrix helps you make deliberate trade-offs about how far to push customization, where to invest in professional services, and when to offer modular vs. deeply embedded solutions.

      Finally, using the AI Deployment Matrix in your sales and implementation process builds trust and credibility. It allows you to clarify what kind of value customers can expect (and on what timeline), educate buyers on the difference between point solutions and transformation, and prepare customers for the executive sponsorship and organizational change management required as they move deeper into the AI Deployment Matrix.

      When customers understand which quadrant your product fits into and what it takes to move toward more transformative use cases, you lay the foundation for better adoption, better retention, and better outcomes.

      Governance: The flip side of clarity

      The AI Deployment Matrix not only clarifies the types of AI technologies you’re deploying and how they advance your ambition, it also helps you determine how to govern such efforts. A one-size-fits-all approach is not viable because each quadrant has a unique set of risks and responsibilities. Effective governance ensures that the productivity gains you achieve through AI don’t come at the expense of trust, safety, or control. Governance doesn’t impede your AI efforts; it allows you to scale them responsibly. As you progress from quadrant 1 to quadrant 4, your governance will need to evolve accordingly (see Figure 2).

      Figure 2
      Governance considerations for each AI Deployment Matrix archetype

      Accelerating your AI journey

      AI transformation doesn’t begin with technology but with clarity. That’s why we designed the AI Deployment Matrix to be more than a just a framework; it’s a strategic lens that enables you to peer past the hype, assess where you are today and map where you need to go. Quadrants 1, 2, and 3 deliver important value, but transformation lives in quadrant 4. That’s where AI reshapes how work gets done, how decisions are made, and how value is created.

      We can help. Beginning with a detailed diagnostic, we’ll assess your current position within the AI Deployment Matrix and show you how to chart an AI strategy built on use cases that link directly to concrete, transformative outcomes. We’ll guide you through the buy/build/partner decisions as you extend your deployments across the quadrants. We can also develop bespoke solutions with our industry-leading data science and AI engineering team, and help you build the same capability internally. And we’ll make sure your teams have the capabilities they need to reach Quadrant 4, with help from our world-class mobilization, change management, AI education, and process redesign experts.

      Getting there takes intentionality. As you evolve point solutions into integrated systems, moving from isolated tools to coordinated workflows and from incremental improvements to fundamental redesign, your AI transformation will take hold. The AI Deployment Matrix is foundational to this journey. Once you understand where AI sits in your company today, you can determine what it becomes tomorrow. Simply a utility, or a true competitive edge? Scattered initiatives, or an enterprise transformation? Now you don’t have to guess.

      著者
      • Headshot of Eric Sheng
        Eric Sheng
        パートナー, Silicon Valley
      関連するコンサルティングサービス
      • アドバンスド・アナリティクス
      アドバンスド・アナリティクス
      Turning an Operational Complexity into a Multimillion-Dollar Market Opportunity

      We laid the groundwork for a shipping company’s AI venture by crafting a compelling proposition, validating market potential, and securing early commercial traction.

      詳細
      アドバンスド・アナリティクス
      A New Demand Forecasting Approach Signals a Bottom-Line Boost

      By improving its algorithm, a consumer health company saw better accuracy, less excess inventory, and fewer disappointed customers.

      詳細
      アドバンスド・アナリティクス
      Blockchain-enabled Payment Flows: A Payments Company Reviews its Strategy

      Amid disruption and uncertainty, this company built a roadmap for opportunities

      詳細
      アドバンスド・アナリティクス
      A Digital-First Bank Finds a Customer-Driven Path to Profitability

      How one neobank prioritized product, design, and marketing to grow its primary customer base.

      詳細
      アドバンスド・アナリティクス
      Better Forecasts, Less Waste Boost Grupo Bimbo’s Profitability

      Bimbo Bakeries USA (BBU), part of $15 billion packaged food company Grupo Bimbo, had what they described as a “persistent and unrelenting” waste problem. They were discarding unsold food at a rate double their peers, creating significant economic and environmental challenges. “We continued to build this waste into our operating budget, and we had to put a stop to it,” says Tony Gavin, Executive Vice President, BBU.

      詳細
      Tags
      • アドバンスド・アナリティクス

      クライアント支援事例

      アドバンスド・アナリティクス Analytics Powers a Software Company’s Bold Revenue Goals

      ケーススタディを見る

      顧客戦略、マーケティング Direct marketing excellence through experimental design

      ケーススタディを見る

      アドバンスド・アナリティクス Analytics guide an entertainment company's growth strategy

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス