Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      論説

      The $100 Billion Opportunity for Generative AI in P&C Claims Handling

      The $100 Billion Opportunity for Generative AI in P&C Claims Handling

      To improve productivity and the claims experience, insurers will need to scale up the most promising initiatives.

      著者:Keith Donnelly, Sean O'Neill, Kara Tolub, Tanja Brettel, and Marcos Bargallo

      • min read
      }

      論説

      The $100 Billion Opportunity for Generative AI in P&C Claims Handling
      en
      概要
      • With its heavy procedures and unstructured data, claims handling provides fertile ground for insurers piloting generative AI technology.
      • We estimate that the technology could reduce loss-adjusting expenses by 20% to 25% and leakage by 30% to 50%, creating more than $100 billion in benefits for insurers and customers.
      • But this can only happen if insurers scale up successful initiatives, which will require organizational change and new capabilities.  

      Claims is where the rubber meets the road for insurance companies. Negotiating a claim is a moment of truth for customers, with an outsize influence on whether they become promoters or detractors of the insurer. It is also the most costly insurer operation, thanks to the large pool of employees and the payouts involved. And given the high inflation, supply chain disruptions, and extreme weather events of recent years, costs have been climbing.

      Advances in generative artificial intelligence hold substantial promise to bend the curve on productivity, after years of hopes for robotic process automation and other digital tools that haven’t fully materialized. Now the technology looks set to reduce costs and improve the claims experience for both customers and employees. In addition, it could offer greater integrity and control of core processes by catching exceptions and leakage faster.

      Many companies have begun to experiment with the technology. Zurich is feeding six years of claims data into generative AI models to identify specific causes of loss and improve underwriting. A South American insurer developed a generative AI pilot for claims management that offers voice-to-text transcription to fill out forms, summaries of claims information, drafts of customer communications, and a chatbot to help agents answer queries. Early results are strong, including a productivity increase of up to 50% for the relevant tasks and a potential 40% reduction in leakage. An insurer in Asia-Pacific achieved a similar reduction in coverage-related leakage and a 10- to 20-minute time savings per claim by using generative AI for coverage validation.

      The outlook for creating value in property and casualty (P&C) claims spans several themes:

      • Customer experience. Generative AI assistants will help employees deliver better experiences. Humanlike virtual assistants will be increasingly deployed to deliver on-demand customer service in more complicated situations, tailored to an individual customer’s claim.
      • Claims payout accuracy. Payouts will become more accurate through easier coverage verification, more efficient investigations, and better negotiations based on past case analysis.
      • Adjuster and contact-center agent productivity. Combined with other technologies, generative AI will reduce the time employees spend on administrative tasks and basic handling, freeing them up for more valuable work such as supporting customers and processing complex claims.
      • Litigated claims. Generative AI will quickly summarize demand packages from plaintiffs, helping determine whether to fight or settle based on coverage and jurisdictional histories. As more court and police records are digitized, litigation support will be a rich environment for generative AI.
      • Employee experience. The Covid-19 pandemic contributed to massive turnover in the claims workforce. Further, an ALM Intelligence survey found that nearly one-quarter of US adjusters anticipate retiring within the next few years. Enhanced training provided by generative AI will help inexperienced employees get up to speed more quickly, while copilot assistance will allow for constant active coaching.

      Looking at the cost side of the equation, some 65% of insurers surveyed by Reuters consider technology, including generative AI, the best approach to addressing rising claims costs. We estimate that generative AI at its full potential could lead to a 20% to 25% decrease in P&C claims loss-adjusting expenses. Savings will come in part from enabling handlers to more efficiently locate and connect policy and claimant information. The tools can transcribe calls, nudge handlers, draft follow-up emails, and initiate internal processes. Chatbots or voicebots will augment or replace employees who gather information from claimants in the initial contact and fact-gathering stage.

      In parallel, we anticipate that generative AI will spur a 30% to 50% decrease in total leakage—the difference between what is paid vs. what is owed per the contract, which occurs when adjusters deviate from policy guidelines or when supply chain problems cause unanticipated costs (see Figure 1). Insurers currently address leakage through audits of closed files, but manual audits are tedious and can cover only a sample of files. Generative AI will be able to handle a large volume of past claims and settlements, recognizing patterns useful in guiding veteran adjusters and training new ones.

      Figure 1
      Generative AI will improve coverage verification, investigation, negotiation, and recoveries
      出所 Bain & Company

      The technology will access information about policyholder coverage more efficiently, helping reduce instances of indemnity payments to people who lack appropriate coverage. Similarly, fast access to information about past negotiations will make for greater accuracy in current negotiations.

      In total, the decrease in loss-adjusting expenses and leakage could create more than $100 billion in economic benefits globally, shared as insurer profits and lower customer rates. Moreover, the technology could reduce the effort spent on humans monitoring humans, both in terms of typical supervisory spans in claims units and in reviews of files that have been closed, which would become open-file reviews.

      Mind the risks

      To be sure, obtaining these results will take time, a thoughtful strategy, and disciplined execution. Generative AI tools are relatively easy to experiment with but harder to scale up. As with any nascent technology, there are several risks to consider, including concerns around accuracy and fairness; explainability of outputs to employees, customers, and regulators; transparency and traceability of models; fraud attempts with AI-generated photos; and privacy of customer data.

      Accommodating generative AI also involves new ways of working for employees. The claims organization tends to be one of the most entrenched in procedures and practices, operating on an apprenticeship type of model that values proven step-by-step processes. A generative AI copilot that systematizes knowledge may eliminate some of the adjuster’s traditional steps, which could raise concerns among longtime employees.

      Given the risks and sustained investment involved, insurers should start with simple but high-value use cases where risk can be managed with human oversight, such as a knowledge assistant, claims file summaries, or a first-notice-of-loss adjuster assistant. Experience with those use cases will set the stage for rolling out more complex internal use cases and simple external ones, such as adjuster coaching on the job (see Figure 2). Then insurers will be positioned to set up complex external use cases, such as a virtual claims assistant.

      Figure 2
      Value, complexity, and risk should determine the sequence of use cases
      出所 Bain & Company

      Two routes to scaling up

      With any use case, attaining large scale is essential to realizing substantial benefits. Currently, 41% of financial services companies recently surveyed by Bain & Company are using generative AI at full production, rather than piloting it. Insurers can scale up through two routes:

      • Through similar types of use cases. Once the first use case of an archetype is built, it can be replicated quickly and inexpensively by reusing technologies and methodologies. This avoids a proliferation of shadow IT and makes for faster deployment in all the descendant use cases. A knowledge assistant, for instance, could perform many of the tasks related to policy information, coverage verification, details in the claims file, and new adjuster training.
      • Within a workflow. Combining multiple use cases within a workflow can optimize processes, leading to cost efficiencies and overall improvement in the customer experience. For example, call summarization, call reason analysis, and call insights and follow-up can collectively transform the workload of a claims adjuster and raise productivity. Focusing on one workflow allows organizations to more effectively allocate resources, prioritize initiatives, manage dependencies, and pinpoint accountability.

      How to get started

      For companies that have just launched small pilots, the history of traditional AI and previous technologies suggests guidelines for senior leaders to steer the claims organization.

      Pan for nuggets of gold. Use cases that have clear value, are simple, and meet the organization’s risk tolerance should get the first look. These applications hit the cash register and earn the right to unlock investments for more transformative initiatives.

      Sort out what to build and what to buy. Vendors are incorporating generative AI into their solutions, so claims organizations have to stay abreast of the market, separating fact from fiction and making educated guesses on who the winners and losers will be. With so many established solutions, it can be a waste of time to, for instance, build a summarization tool or a bespoke data extraction tool. Proprietary solutions should be limited to cases of high strategic importance and high complexity or risk, such as employee-facing use cases that significantly improve the customer or employee experience. Cases of lower strategic importance and risk can be handled with third-party solutions.

      Devise rapid experiments using different testing methodologies. A test-and-learn approach informs decisions about how to wring the most value from each initiative. Engage claims managers and frontline employees to test solutions and evaluate them for completeness and accuracy.

      Set up joint business-technical teams. Collaboration is crucial to ensure that solutions meet user needs and are technically feasible. Frontline employees are sensitive to the structure and form of responses. Depending on the type of query, a response should match a set logic flow and include the right degree of detail in the right tone.

      Inspire people to want to adopt. Involve the entire claims team early on and in each step of the process. Besides ongoing training for employees, respected generative AI champions can help accelerate adoption by communicating how the technology can improve ways of working.           

      Imagining a different future

      Plenty of hype surrounds generative AI. However, it’s reasonable and useful for insurers to think big in their ambitions for transforming claims operations.

      Imagine, for instance, if adjusters could use the technology to have a full claims history displayed instantly, along with the ability to search an AI knowledge base and get an initial draft of answers to customers’ questions. They could call up a quick summary of claims file data. And they could rely on a copilot to provide suggestions based on past outcomes.

      Or imagine if claims supervisors could get actionable analytics, tracking indicators, and a rapid read on adjuster responses and tone, as a guide to improve performance.

      Imagine if customers could turn to a chatbot for accurate claims status updates and instant responses to questions.

      Big ambitions can motivate people in claims. Careful execution of experiments, with an eye to scaling up the successes, will keep the organization on track to reaching those ambitions over time. Generative AI is a powerful tool but a tool nonetheless, so striking the right balance between human and machine in allocating work will ultimately determine how much competitive advantage an insurer can build in claims.

      著者
      • Headshot of Keith Donnelly
        Keith Donnelly
        パートナー, Atlanta
      • Headshot of Sean O'Neill
        Sean O'Neill
        パートナー, Chicago
      • Headshot of Kara Tolub
        Kara Tolub
        アソシエイト パートナー, Sydney
      • Headshot of Tanja Brettel
        Tanja Brettel
        Practice Executive Vice President, Dusseldorf
      • Headshot of Marcos Bargallo
        Marcos Bargallo
        パートナー, Sydney
      関連業種
      • 金融サービス
      • 保険
      関連するコンサルティングサービス
      • Digital
      • Service Operations
      • アドバンスド・アナリティクス
      コンサルティングサービス
      • Artificial Intelligence
      • HR Function Advantage
      Artificial Intelligence Insights
      AI Won’t Just Cut Costs, It Will Reinvent the Customer Experience

      Beyond efficiency, AI helps create a more personalized experience that delivers a triple play of customer loyalty, employee engagement, and revenue growth.

      詳細
      Artificial Intelligence Insights
      The 2026 Retail Executive Agenda

      Here are letters to the C-suite to help strengthen strategy, catalyze collaboration, and expand value creation in the AI age.

      詳細
      金融サービス
      Rethinking Transformation: Lawrence Lam on Leading Change at Prudential

      Frankie Leung speaks with Lawrence Lam, CEO of Prudential Hong Kong, about organizational transformation and sustaining change through a people-led approach.

      詳細
      Artificial Intelligence Insights
      HR: The Hidden Accelerator of AI Adoption

      Scaling AI starts with people. Yet only half of companies involve HR in their strategy.

      詳細
      Artificial Intelligence Insights
      How Can AI Be Used in Machinery & Equipment?

      Explore the use cases with the highest potential.

      詳細
      First published in 10月 2024
      Tags
      • Artificial Intelligence
      • Artificial Intelligence Insights
      • CIO Insights
      • Digital
      • HR Function Advantage
      • Service Operations
      • アドバンスド・アナリティクス
      • 金融サービス
      • 保険

      クライアント支援事例

      Digital Reimagining Insurance for the AI Era

      ケーススタディを見る

      Customer Experience From Laggard to Leader: Desjardins Evolves Member Centricity for the Digital Age

      ケーススタディを見る

      IT Cost Transparency Helps Insurer Strengthen Tech Expense Management Capability

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      Digital is a service mark of Bain & Company, Inc.

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス