Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • Blog: Inside Bain
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Bain Classic | 論説

      Big Data: The Organizational Challenge

      Big Data: The Organizational Challenge

      If you don't know who (and where) your chief analytics officer is, you may already be behind the curve.

      著者:Travis Pearson and Rasmus Wegener

      • min read

      論説

      Big Data: The Organizational Challenge
      en

      Samsung uses it to power the content recommendation engine on its newest smart TVs. Progressive Insurance relies on it to capture driving behavior, determine customer risk profiles and decide on competitive pricing. LexisNexis Risk Solutions uses it to identify individuals, including family relationships, thus helping financial institutions and other clients reduce fraud.

      It, of course, is Big Data—the mining and processing of petabytes’ worth of information to gain insights into customer behavior, supply chain efficiency and many other aspects of business performance. We say of course, because Big Data is hard to miss these days. Industry analysts and media observers hype it as the next big thing for every enterprise, and many companies have been rushing to climb on board. But is building an advanced analytics capability really worth the investment? Until now, data to answer that question has been scarce.

      A recent Bain & Company study, however, should put the question to rest. Early adopters of Big Data analytics have gained a significant lead over the rest of the corporate world. Examining more than 400 large companies, we found that those with the most advanced analytics capabilities are outperforming competitors by wide margins (see Figure 1). The leaders are:

      • Twice as likely to be in the top quartile of financial performance within their industries
      • Five times as likely to make decisions much faster than market peers
      • Three times as likely to execute decisions as intended
      • Twice as likely to use data very frequently when making decisions

      big-data-the-organizational-challenge-fig-01_embed

      This helps to explain why so many companies are now asking where they stand on Big Data vis-à-vis their rivals— and whether they’re missing out on a new and essential competitive tool.

      To get in the Big Data game, a company needs three kinds of table stakes. The first is the data itself: large quantities of information in a format allowing for easy access and analysis. Most large companies already have this—in fact, they generally have more than they can use. The second is advanced analytical tools, such as Hadoop and NoSQL. Both proprietary and open-source tools and platforms are widely available these days— all you need are people capable of putting them to work. That brings us to the third, and usually the most challenging, set of table stakes: expertise. Advanced analytics requires staff with state-of-the-art skills in everything from data science to worldwide privacy laws, along with an understanding of the business and the relevant sources of value.

      But table stakes alone won’t help you win, because Big Data isn’t just one more technology initiative. In fact, it isn’t a technology initiative at all; it’s a business program that requires technical savvy. So you can’t just add more capacity and expertise, and expect your IT or marketing functions to begin generating data-based insights. Even if they did, the rest of the company would be unlikely to act on those insights.

      As the analytics leaders have discovered, succeeding with Big Data requires a different approach: You need to embed Big Data deeply into your organization. It’s the only way to ensure that information and insights are shared across business units and functions. This also guarantees the entire company recognizes the synergies and scale benefits that a well-conceived analytics capability can provide.

      Let’s look at what’s involved.

      Ambition

      Leading companies begin the embedding process by spelling out their ambition. We will embrace Big Data as a new way of doing business. We will incorporate advanced analytics and insights as key elements of all critical decisions. A declaration like this from the senior leadership team is an essential precondition for the kind of behavior change this article will discuss. But the senior team must also answer the question: To what end? How is Big Data going to improve our performance as a business? What will the company focus on?

      There are four areas where analytics can be relevant: improving existing products and services, improving internal processes, building new product or service offerings, and transforming business models. These objectives often overlap. Progressive’s new “Snapshot” device, which monitors driving behavior, helps the company determine whether a given driver is the right customer for the company. Intuit’s acquisition of Mint.com has helped expand its business beyond purchased software to ad-supported software. Humana, the insurance provider, is using Big Data to transform its business: Using claims data, the company can determine who is likely to end up in a hospital for preventable reasons and then intervene early. Humana and other health insurance carriers are also mining data to help improve patient outcomes and to reward healthy behaviors.

      Most companies are opportunity-rich when it comes to analytics, and large enterprises can pursue multiple avenues, either simultaneously or sequentially. Still, nearly every company can improve its trajectory by determining priorities and picking the right angle of entry.

      To succeed with Big Data, executives need to embed analytics deeply into their organizations, says Rasmus Wegener, a partner in Bain's Advanced Analytics practice.

      Horizontal analytics capability

      With ambition defined, Big Data leaders work on developing a horizontal analytics capability. They learn how to overcome internal resistance, and create both the will and the skill to use data throughout the organization.

      This is a big job. Organizations don’t change easily and the value of analytics may not be apparent to everyone, so senior leaders may have to make the case for Big Data in one venue after another. They may need to help people change their everyday behaviors and then continue along the new path without backsliding. As with any major initiative, executives and managers have a variety of tools at their disposal. Leading companies typically define clear owners and sponsors for analytics initiatives. They provide incentives for analytics-driven behavior, thereby ensuring that data is incorporated into processes for making key decisions. They create targets for operational or financial improvements. They work hard to trace the causal impact of Big Data on the achievement of these targets.

      For example, Nordstrom elevated responsibility for analytics to a higher management level in its organization, pushed to make analytical tools and insights more widely available and embedded analytics-driven goals into its most important strategic initiatives. Another global consumer electronics company selected high-impact analytics projects for additional support, creating positive business results stories and additional demand for Big Data solutions. The company added incentives for senior executives to tap Big Data capabilities, and the firm’s leadership has reinforced this approach with a steady drumbeat of references to the importance of analytics in delivering business results.

      インフォグラフィック

      The Who, Why and How of Big Data

      If you don't know who (and where) your chief analytics officer is, you may already be behind the curve.

      An organizational home

      The Big Data leaders then create an organizational home for their advanced analytics capability, often a Center of Excellence (CoE) overseen by a chief analytics officer.

      Creating an organizational home involves several key design decisions. A company has to set its strategy for Big Data deployment. It has to assign collection and ownership of data across business functions, plan how to generate insights, and prioritize opportunities and allocation of data scientists’ time. It must host and maintain the technological infrastructure, set privacy policy and access rights, and determine accountability for compliance with local laws and data security. All of that is a tall order. To get it done, companies typically pursue one of four models:

      • Business unit led. When business units have distinct data sets and scale isn’t an issue, each business unit can make its own Big Data decisions with limited coordination. AT&T and Zynga are among the companies that rely on this model.
      • Business unit led with central support. Business units make their own decisions but collaborate on selected initiatives. Google and Progressive are examples of this approach.
      • Center of Excellence. An independent center oversees the company’s Big Data. Units pursue initiatives under the CoE’s guidance and coordination. Amazon and LinkedIn rely on CoEs.
      • Fully centralized. The corporate center takes direct responsibility for identifying and prioritizing initiatives. Netflix is an example of a company that pursues this route.

      Note that in none of these models does IT own Big Data. While IT often plays a critical role in providing and maintaining the infrastructure and tools required to run Big Data analytics, most companies find that it’s a mistake to have IT own or manage the business adoption capability.

      A company’s choice of model obviously depends on its ambition and its existing operating model. For example, companies with deep analytics capabilities and an emphasis on experimentation and innovation, such as Google and Progressive, can rely on a generally decentralized approach. But many analytics leaders have found that a CoE has the most advantages and the fewest limitations (see Figure 2). A well-functioning CoE enables cross-business-unit access and sharing of data. It takes responsibility for supporting and coordinating every initiative from a business unit, thus providing synergies and scale benefits. On the corporate level, the CoE serves as the go-to organization for analytics strategy and insight support. It sets the road map, and it establishes and maintains privacy policies. A leading European telecommunications company, for example, is in the process of deploying Big Data for a range of purposes, including analyzing customer data to provide better offers and services, and using network trsffic data to optimize network management and investments. It will house these capabilities in a variety of settings, but all will be coordinated by a CoE.


      big-data-the-organizational-challenge-fig-02_embed

      Building a solid CoE from scratch can take time. The center needs experienced leadership and a clear plan for staying connected to the business. It should have a strategy designed to ensure continuous learning, so that it maintains state-of-the-art capabilities. Staffing can be a particular challenge. A CoE requires not only skilled PhD-level data scientists, but also analytics engineers, business managers to identify and prioritize opportunities, and legal talent for advice on standards for data privacy and security. Finding team leaders and identifying partners to fill out the center’s staffing may take between six and 12 months, with scaling up requiring another 12 to 18 months.

      Getting started

      Many companies are already dipping their toes into Big Data waters. But given the complexities we have discussed—in particular the need to anchor analytics capabilities in the organization—toe-dipping isn’t likely to produce significant insights. That’s why only a select few, so far, have made substantial progress. Right now, many of these leaders are pulling even farther ahead of competitors, so others are playing the necessary game of catch-up.

      But it isn’t too late. A good first step is to benchmark your industry and determine your company’s current position in Big Data analytics and capabilities, compared with that of your chief rivals. This exercise will help you determine the investment necessary to improve your relative position. If you are significantly behind the competition, you will have the kind of burning platform that is often required to create and sustain change. You can then begin experimenting, testing hypotheses to learn where and how advanced analytics is most likely to help your business. This type of review will help you determine your Big Data ambition, embed a culture of analytics and decide where Big Data’s organizational home should be.

      Travis Pearson is a partner with Bain & Company and based in the firm’s San Francisco office. Rasmus Wegener is a Bain partner based in Atlanta.


      big-data-the-organizational-challenge-fig-01_full

      big-data-the-organizational-challenge-fig-02_full
      著者
      • Headshot of Rasmus Wegener
        Rasmus Wegener
        パートナー, San Francisco
      関連するコンサルティングサービス
      • IT
      • アドバンスド・アナリティクス
      アドバンスド・アナリティクス
      The value of Big Data: How analytics differentiates winners

      Only 4% of companies said they have the right resources to draw meaningful insights from data—and to act on them.

      詳細
      テクノロジー
      How to Keep Control of an IT System That's Outsourced to Multiple Suppliers

      To master increasingly complex IT, companies are turning to multiple suppliers. But that strategy creates another risk: loss of control over mission-critical functions.

      詳細
      IT
      Reimagining Merchandising in the Era of Agentic AI

      The future of merchandising is not better analysis, but faster, smarter execution—and agentic AI is what makes that possible.

      詳細
      ベイン・クラシック
      Is Your Sales Organization Ready for a Recession?

      A winning plan will help companies prosper when the economy turns down.

      詳細
      ベイン・クラシック
      Three Ways Companies Make Work Purposeful

      Retaining employees starts with keeping them engaged.

      詳細
      First published in 9月 2013
      Tags
      • IT
      • アドバンスド・アナリティクス
      • ベイン・クラシック

      クライアント支援事例

      アドバンスド・アナリティクス A Global Retailer Transforms Technology and Data to Conquer the Digital Future

      ケーススタディを見る

      アドバンスド・アナリティクス Advanced Analytics powers up UtilityCo’s reliability, and customers notice

      ケーススタディを見る

      IT Bridging the Gap Between Business and Technology

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス