Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      論説

      Gen AI in Finance Isn’t Failing—It’s Working Where It’s Built In

      Gen AI in Finance Isn’t Failing—It’s Working Where It’s Built In

      The fastest payback comes from automating workflows, not piloting experiments.

      著者:Michael Heric

      • min read
      }

      論説

      Gen AI in Finance Isn’t Failing—It’s Working Where It’s Built In
      en
      概要
      • Most gen AI pilots fail to deliver ROI, a recent study finds, but in finance, embedded AI is already creating substantial value through automation.
      • Data from Anthropic shows that 77% of enterprise uses for AI involve automating tasks—and success hinges on context, not cost.
      • Finance teams delivering the biggest gains are embedding AI in repeatable, decision-rich processes.
      • The most effective implementations tie AI to broader finance modernization as opposed to specific tasks.

      The headline from MIT’s State of AI in Business 2025—that roughly 95% of organizations see no measurable return on their generative AI investments—has made some leaders consider tapping the brakes. That’s the wrong conclusion, especially for the finance function. MIT’s analysis shows the problem isn’t AI models; it’s the approach. Companies that reap the biggest benefits from AI embed it into real workflows, ensure systems learn from feedback, and measure business outcomes.

      The earliest and clearest returns from AI are showing up in support functions such as finance, procurement, and operations through reduced external spending, faster cycles, and tighter controls, even without broad headcount cuts, according to the MIT report. Finance processes tend to be repeatable, data-rich, and policy-bound—the very conditions in which generative AI delivers substantial benefits.

      What’s more, budgets remain skewed toward visible, top-line pilots, while back-office automation—where the payback is often faster—remains underfunded. For CFOs, the report’s message isn’t “spend less on gen AI.” It’s “spend differently.” Aim more of the next dollar at finance use cases that affect cash, cost, and risk. Don’t buy or build AI tools for what they do but for the business outcomes they deliver.

      Embedding AI in workflows

      Anthropic’s Economic Index offers a detailed look at how enterprises actually use large language models in production. When models are embedded via application programming interfaces (APIs) rather than chat interfaces, companies don’t “converse,” they delegate. Anthropic reports that 77% of its enterprise API usage is linked to automating tasks, and that share is rising over time as users shift from iterative prompting to clear, directive commands (see Figure 1).

      Figure 1
      In most enterprise use cases, AI is already doing the work by automating tasks, not just assisting users
      visualization

      Notes: Automation refers to interactions where the model executes a task directly (directive or feedback-loop behavior); augmentation covers collaborative or iterative use, where humans and AI refine outputs together

      Source: Anthropic Economic Index, September 2025

      That behavioral shift is key for finance. It suggests that the most effective use of enterprise AI is automation, not chat-related assistance. Automation is the best way to improve straight-through processing, working capital performance, and cycle times.

      Anthropic’s second major finding reinforces this point: The main limitation isn’t price; it’s data that provides context. When companies give AI complex tasks, they tend to provide much longer inputs. But the payoff is limited: Every 1% increase in input length yields only about 0.38% more output. In other words, making inputs longer doesn’t boost results much. The study also found that demand doesn’t change significantly when token prices change, suggesting that cost isn’t what’s holding back adoption. Rather, it’s how well AI can handle complex or detailed information.

      In finance, the main challenge is building a solid data foundation. That means creating well-managed data products for things like the chart of accounts, vendor and customer records, and policy documents. These need to connect smoothly with enterprise resource planning (ERP) and enterprise performance management (EPM) systems, while ensuring data is retrieved securely and within proper boundaries—so the systems can operate seamlessly and stay compliant with the Sarbanes-Oxley Act (SOX) and International Financial Reporting Standards (IFRS).

      In our experience, leading companies are moving from application-centric systems to data-driven platforms, then to intelligent orchestration, and, ultimately, to AI agents that manage multistep workflows (see Figure 2). The destination is a finance function that operates continuously—where closing, forecasting, and review processes run in real time and human attention is needed only for exceptions. That goal becomes possible when AI is embedded directly in the flow of work and is powered by clean, trusted data.

      Figure 2
      AI, in all its forms, will transform the financial close process
      出所 Bain & Company

      ROI in finance

      Finance AI use cases with the highest returns share three traits: They’re bounded, repeatable, and tied to financial decisions that create value.

      Accounts payable and receivable are becoming AI-powered engines of efficiency. In payables, AI now captures and classifies invoices, matches them to purchase orders, applies tolerances, auto-approves entries, and flags only the exceptions for review. On the receivables side, AI parses remittances, matches payments to open invoices, posts them automatically, and segments collections by risk—freeing up teams to focus where it matters most. When paired with APIs or robotic process automation, these agentic designs shorten cycle times and scale throughput without sacrificing control.

      Management reporting is another proven win for automation. It’s highly repeatable and template-driven, making it ideal for AI to generate tables, charts, footnotes, and narrative commentary. Even modest adoption delivers returns, given the time these tasks normally consume. By contrast, general “finance knowledge bots”—tools that index everything—require extremely high adoption to deliver returns. They are low volume, require broad seat licensing, and demand extensive human oversight. In most cases, the people and license costs far outweigh the technology expense.

      The rule of thumb: Focus AI on critical business decisions that affect cash, margin, or risk (for example, a procure-to-pay leakage agent that flags off-contract rates or duplicate billing) rather than diffuse Q&A tools that answer everything.

      Not all copilots deliver enterprise value out of the box. These assistant-style tools can boost analyst productivity—especially in spreadsheets—but without integration to systems of record, they rarely change cost structures or improve compliance. Similarly, processes that rely on scattered or tacit knowledge, such as bespoke revenue recognition across one-off contracts, tend to underperform until their data is cleaned and connected, MIT’s report suggests.

      Achieving more value from AI

      Design for automation, not just assistance. Anthropic’s enterprise data shows that once models are embedded, users shift from cocreating outputs to fully delegating tasks. In finance, that means building straight-through workflows with confidence thresholds, approval logic, and audit trails. The goal isn’t better spreadsheets; it’s measurable gains in touchless processing, faster cycle times, and more effective control.

      Build the context. For finance AI, the real constraint isn’t token cost but whether the context is ready. That means aligning on shared definitions for the chart of accounts and master data, integrating ERP and EPM systems with document repositories under a policy-aware retrieval layer, and embedding telemetry across every AI-enabled process. Every action should be traceable, with automated logs that show which data was used, the rules or models applied, and who approved or overrode decisions. This not only ensures compliance under SOX and IFRS—it also builds the trust finance needs to scale AI with confidence.

      Focus on outcomes and partner to scale. MIT’s report shows that AI solutions built with external partners are nearly twice as likely to reach deployment as those built in-house. Successful CFOs hold vendors accountable for results such as touchless processing rates, faster close cycles, fewer exceptions, and lower external spending. They also insist on systems that get smarter with use. The key: Measure impact based on business outcomes, not in prompts used or hours saved.

      Tie AI to finance modernization. Gen AI is an accelerator, not a shortcut. To deliver optimal results, it needs to move in step with broader efforts like data cleanup, workflow design, and process modernization. That’s how you create a seamless flow from insight to decision to action. Anchor AI programs to a multiyear roadmap, including continuous close, rolling forecasts, and real-time working-capital control.

      Leading finance executives already are wielding AI to shape how decisions are made, how work gets done, and how finance creates value. The opportunity isn’t in experimenting for its own sake—it’s in embedding AI into core finance processes. Early adopters who link gen AI to a modernization agenda will see benefits increase over time as their data, governance, and automation foundations strengthen. In a rapidly automating landscape, those strengths will become a key competitive edge.

      著者
      • Headshot of Michael Heric
        Michael Heric
        パートナー, New York
      関連するコンサルティングサービス
      • Automation
      • アドバンスド・アナリティクス
      • コスト・トランスフォーメーション
      • サポート部門
      コンサルティングサービス
      • Artificial Intelligence
      • Finance Function Advantage
      • Technology Cost Management
      CFO Insights
      Breaking the G&A Cost Cycle

      How leading companies are unlocking sustainable efficiency.

      詳細
      CFO Insights
      The 2026 Retail Executive Agenda

      Here are letters to the C-suite to help strengthen strategy, catalyze collaboration, and expand value creation in the AI age.

      詳細
      CFO Insights
      Autonomous Finance and the CFO's Next Frontier

      At the CNBC CFO Council Summit, Bain Partners Michael Heric and Steve Beam discussed how innovative CFOs are using AI to transform finance.

      詳細
      CFO Insights
      AI Won’t Just Cut Costs, It Will Reinvent the Customer Experience

      Beyond efficiency, AI helps create a more personalized experience that delivers a triple play of customer loyalty, employee engagement, and revenue growth.

      詳細
      Artificial Intelligence Insights
      Scaling AI to Transform the Enterprise

      Five insights from Gartner IT Symposium/Xpo 2025.

      詳細
      First published in 10月 2025
      Tags
      • Artificial Intelligence
      • Artificial Intelligence Insights
      • Automation
      • CFO Insights
      • CIO Insights
      • Finance Function Advantage
      • Technology Cost Management
      • アドバンスド・アナリティクス
      • コスト・トランスフォーメーション
      • サポート部門

      クライアント支援事例

      A Beauty Company Enables Always-On Brand Acceleration

      ケーススタディを見る

      業績改善 A Pharma Company’s Finance Function Gets a Shot in the Arm

      ケーススタディを見る

      サポート部門 A Chemical Company’s Transformation Reduces Support Function Costs by 25%

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス