Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • Blog: Inside Bain
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      記事

      Google Cloud Next 2025: AI Moves from Possibility to Foundation

      Google Cloud Next 2025: AI Moves from Possibility to Foundation

      Seven takeaways for executives.

      著者:Brock Simon, Todd Papaioannou, Eric Sheng, and Stuart Sim

      • min read
      }

      記事

      Google Cloud Next 2025: AI Moves from Possibility to Foundation
      en

      The tone of the conversation changed last week at Google Cloud Next 2025. We’re no longer talking about what AI might do; we’re seeing what it is doing. No longer a feature to explore, AI is becoming the operating system of enterprise technology. From infrastructure to productivity tools, from governance to creativity, AI is being built into the very foundation of how companies operate.

      Here are seven takeaways every executive should consider.

      1. Your business doesn’t need an AI roadmap. Your business roadmap needs AI.

      AI is not a side project or a standalone goal. When treated separately from core strategy, it typically leads to disconnected pilots, limited adoption, and unclear results. The most effective organizations embed AI directly into their primary business roadmap, including operations, product development, marketing, finance, and customer experience.

      Google is repositioning Workspace as more than a productivity suite. Workspace Flows, Google Vids, and Gemini-powered writing tools are turning it into a coordination layer for everyday work. Agents now generate, refine, and automate tasks across Docs, Sheets, Gmail, and Slides. Workspace is evolving into a digital teammate that supports how teams collaborate, manage tasks, and make decisions.

      2. Focus on business impact, not technology firsts.

      The most common barriers to AI success aren’t technical; they’re organizational. Models do not create value unless they are integrated into business processes, supported by adoption, and measured against real goals. The true impact comes when AI improves speed, quality, efficiency, or customer experience.

      Google’s platform allows organizations to use multiple models together in a single environment. Gemini can be paired with third-party options such as Claude and AI21 or with open models like Llama. Different models serve different needs. Optimized for speed and cost, Gemini 2.5 Flash is often used for chat, email assistance, and summarization. Gemini 2.5 Pro is designed for deeper reasoning and extended context and is well suited for agents that handle multistep tasks, code generation, or complex decision support. It supports context windows of up to 1 million tokens, allowing agents to reason across entire documents, long conversations, and complex project threads without losing coherence. Selecting the right model for each workflow is becoming a core capability in AI strategy. Tools like Vertex AI Search and AI Studio are also helping teams prototype and deploy search and agent use cases faster and with less technical overhead.

      3. Clean, AI-ready data is a strategic asset.

      Modern AI models depend on data that is structured and contextual, not just available. Google is embedding vector search, semantic indexing, and multimodal inputs into platforms like BigQuery, AlloyDB, Firestore, and Spanner. The Model Context Protocol and unified query interfaces allow agents and models to access enterprise data directly and more effectively.

      Bad data leads to bad agents. Logs, product specifications, call transcripts, and customer feedback need to be curated, structured, and prepared for AI consumption. Tools exist to clean, label, and align data, but they must be used deliberately and early in the development process. The best results come when business and technical teams work together to design data pipelines that use clear schemas, metadata tagging, embedding strategies, and retrieval logic matched to task complexity and model context.

      4. The full AI stack is ready to scale and built for security.

      Google has built a complete AI stack across chips, infrastructure, and orchestration. This includes tensor processing units for model training and high-performance H4D virtual machines for GPU-based inference and deployment. Gemini models and integrated developer tools offer a range of ways to build, fine-tune, and operationalize AI. Organizations can use pretrained models, bring their own, or fine-tune models for their needs. Deployment options include APIs, containerized services, and embedded Workspace tools.

      Security is now built into the platform, not layered on top. Google Unified Security brings threat detection, policy enforcement, and incident response into a centralized environment powered by AI. Agents can triage alerts, generate malware analysis, and trigger automated workflows. Real-time monitoring and integrations with Mandiant and VirusTotal give security teams broader visibility and faster response. This approach helps reduce incident response times, automate compliance processes, and shift security from passive monitoring to proactive defense.

      Industry adoption is accelerating through reference architectures designed for complex environments. In sectors like retail, consumer products, food service, and healthcare, companies are integrating AI into personalization, governance, and customer experience workflows with measurable results. These are no longer pilots. They represent a shift in how businesses operate.

      5. Governance is the starting line, not a checkpoint.

      Building AI agents has become significantly more accessible, and organizations are leading with governance and controls from the outset to smooth the path from MVP to production. Google’s ecosystem now includes Agentspace, Agent Designer, the Agent Development Kit, and the Agent2Agent Protocol. These tools allow a wide range of teams to create agents for research, operations and decision support. The Agent Gallery offers reusable templates and prebuilt agents for ideation and research—great for lower barriers to adoption, but guardrails need to be in place.

      To manage this growing capability, organizations need both strong governance and a clear agentic structure that defines agent roles, permissions, and oversight. Leading teams are building layered architectures with redundancy, validation agents, and supervisory logic to ensure accuracy and compliance with company governance policies. Google is also applying this intentional design approach to its model portfolio, investing in prebuilt agents for human and AI collaboration. This reflects a broader view of governance that includes not just oversight and control but thoughtful decisions about which models are best suited for which problems.

      Some organizations are using agent simulation to test behavior and risk before deployment. Google’s Agent2Agent Protocol represents a broader shift toward standardizing how agents interact and coordinate across systems, much like APIs established common rules for software integration.

      6. Trust sets the pace of deployment.

      Enterprise AI is moving from pilot to production in areas that impact revenue and customer experience. In call centers and digital service channels, AI agents are increasingly the first point of engagement, with humans stepping in only when needed. This shift is reshaping how service workflows are designed and resourced.

      Vertex AI supports post-training customization using parameter-efficient fine-tuning methods like adapters and LoRA. It also enables retrieval-augmented generation, agent simulation, and safety tuning. These tools allow organizations to shape agent behavior, monitor outcomes, and ensure systems operate within business and compliance constraints. These capabilities are especially important in regulated industries such as healthcare and financial services, where auditability, explainability, and human oversight are required. Trust is created through clear design choices and governance, not assumptions. The faster policies around transparency and escalation are defined, the faster AI can scale with confidence.

      7. Google multimodal AI is changing how brands work and communicate.

      Creative teams are now using generative tools as part of daily production. Applications like Nvidia Picasso, Adobe Firefly, Runway, and a growing ecosystem of diffusion models—many of which are open source—are enabling teams to create product imagery, marketing content, 3D assets, and video using only natural language prompts. Gemini’s multimodal capabilities continue to expand across text, image, code, and structured outputs, and Google’s new Veo 2 model brings high-quality, prompt-based video generation into reach for brand and campaign teams.

      These tools are already being used across industries to accelerate campaigns, reduce production costs, and localize assets at scale. As generative AI becomes part of the creative workflow, brand expression is becoming more dynamic, driven by data, and adaptable. AI is not replacing creativity; it is changing how creative work gets done.

      著者
      • Headshot of Brock Simon
        Brock Simon
        Alumni, San Francisco
      • Headshot of Todd Papaioannou
        Todd Papaioannou
        パートナー, Silicon Valley
      • Headshot of Eric Sheng
        Eric Sheng
        パートナー, Silicon Valley
      • Headshot of Stuart Sim
        Stuart Sim
        Alumni, New York
      関連するコンサルティングサービス
      • Digital
      • アドバンスド・アナリティクス
      コンサルティングサービス
      • Artificial Intelligence
      Artificial Intelligence Insights
      Want More Out of Your AI Investments? Think People First

      To unlock AI’s exponential productivity potential, companies must modernize workflow and workforce in tandem.

      詳細
      Artificial Intelligence
      How Agentic AI Is Reshaping Customer Behavior in Italy and Europe

      As global AI use increases, the challenge lies in ensuring users are appropriately empowered by the technology.

      詳細
      Artificial Intelligence Insights
      Life Sciences’ AI Momentum Requires a Workforce Redesign

      AI scalers aren't waiting for new talent—they're building it.

      詳細
      Artificial Intelligence Insights
      Four Ways Leaders Can Make AI Redesigns Stick

      As companies redesign to scale AI, these four lessons help leaders ensure their organizations actually live the new operating model.

      詳細
      Artificial Intelligence Insights
      What Business Leaders Need to Know About AI Sovereignty

      Aligning business strategy with national AI priorities is necessary to compete and scale.

      詳細
      First published in 4月 2025
      Tags
      • Artificial Intelligence
      • Artificial Intelligence Insights
      • Digital
      • アドバンスド・アナリティクス

      クライアント支援事例

      A Beauty Company Enables Always-On Brand Acceleration

      ケーススタディを見る

      Digital Reimagining Insurance for the AI Era

      ケーススタディを見る

      アドバンスド・アナリティクス Blockchain-enabled Payment Flows: A Payments Company Reviews its Strategy

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      Digital is a service mark of Bain & Company, Inc.

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス