Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      How to Choose among Three Forecasting Models: Machine Learning, Statistical and Expert

      How to Choose among Three Forecasting Models: Machine Learning, Statistical and Expert

      Get to know their strengths and weaknesses.

      著者:Yue Li

      • min read
      }

      記事

      How to Choose among Three Forecasting Models: Machine Learning, Statistical and Expert
      en

      Forecasting methods usually fall into three categories: statistical models, machine learning models and expert forecasts, with the first two being automated and the latter being manual. Statistical methods, including time series models and regression analysis, are considered traditional, while machine learning methods, such as neural network, random forest and the gradient-boosting model, are more modern. Yet when selecting a forecasting method, the “modern vs. traditional” or “automated vs. manual” comparisons can mislead. Preferences will depend on the modeler’s training: Those with data science training will prefer machine learning models, while modelers with business backgrounds have more trust in expert forecasts. In fact, each of the three methods has different strengths and can play important roles in forecasting.

      Statistical models

      Statistical models usually have better explanatory power because they demonstrate how the forecast variable projects out or how causal factors drive the forecast variable in an explicit form. Because of the explicit form of such modeling, however, the causal relationship may be relatively simpler than what machine learning models can model.

      The highly predictable behavior of statistical models makes them suited for individual series, such as a sales forecast for a particular SKU in a store or a total sales forecast for all SKUs in the store. Since each individual series is modeled independently, parallelization of the modeling process should be considered for scaling purposes.

      Different statistical models use different assumptions so that they work fairly well on a specific pattern, such as the Croston method for an intermittent demand series or an autoregressive integrated moving average model for series that are autocorrelated. Due to the specific assumptions, applying statistical models usually requires the modeler to have deeper analytical knowledge.

      Machine learning models

      Machine learning models can model complicated relationships between the causal factors and forecast variables. They work more similarly to a black box, however, in that they cannot express such relationships in a clear form. There have been efforts to make the black box more interpretable, with the interpretability coming from ranking the importance of the factors, such as the Gini index in a random forecast model, or a unified approach, such as Shapley additive explanations.

      For individual series, machine learning models could be computationally slow and have poor performance due to overfitting. A good strategy, therefore, is to apply them to modeling a group of series together, such as sales forecasts for all SKUs in a store.

      Since this consists of one big generic model for a group, machine learning models usually have good overall performance, but they might not generate similarly strong results at individual series levels. The differences in forecast quality usually come from feature generation and model parameter tuning, which require the modeler to have a good understanding of the data and spend time on an iterative process of trial and error.

      Expert forecasts

      Experts can excel at projecting qualitative information in a forecast. In the fashion industry, for example, trend information is hard to quantify, which makes an expert’s experiences and judgment more valuable. In addition, automated forecasts assume that the future will resemble the past. When a market changes quickly, an expert who understands the market dynamics will have a more reliable sense of its future direction. Expert forecasts are subjective, however, and prone to bias. Forecast quality will hinge on the expert’s experience, the information he or she was exposed to and subjective impressions.

      The amount of data collected is one factor that helps determine the forecast method. Expert forecasts require minimal or no data. Statistical models have more data requirements as the number of observations must exceed the parameters used in the model. Machine learning models tend to work effectively only on large data sets, since the models often are more complicated—for example, a deep learning model will not forecast market growth because the data is too small and noisy for the model.

      Stability requirements of forecast results also come into play. If a company wants high consistency of results each time it reruns the model, it should first consider a statistical model. This type of model runs individual series separately, has the flexibility to remodel a portion of the series as needed and, because of the high predictability of the model form, produces more stable results. Machine learning models, by contrast, treat a group of series as one big model and are more unpredictable in form, so they must be retrained for all series and may create a less stable forecast. The differences in stability between the two types of methods, however, will depend on the particular business and the data.

      It’s essential to understand the priorities of the people using the forecast. We have seen situations in which the users had a complicated and highly automated business, so a machine learning model addressed their needs. In another situation, the companies originally said they wanted a state-of-art machine learning model, but the end users of the forecasting system either did not trust results from black box models or needed additional information from the model to make decisions. Instead of implementing a forecast system that no one will use, engaging end users in the design phase to understand what decisions they want out of the forecast, how much interpretability they need to make the decision and what type of models they are comfortable with to improve the forecasting process all raise the odds of success.

      When the situation permits, the best strategy may be to combine the strengths of different methods. We have done this in several recent demand-forecasting cases. By combining forecast results from statistical methods targeting individual series patterns with machine learning methods, which model the effect of complicated causal factors, we have significantly improved forecast accuracy for a large grocery store chain. By designing an appropriate tool to present the automated forecasting results and facilitate the forecasting adjustment process, a food company combined an expert forecast with the automated forecast to incorporate both the qualitative information and quantified results. This not only improved forecast accuracy, which led to millions of dollars in inventory cost savings and higher revenue from a reduction in lost sales, but also instilled more trust in the forecast from end users, making it easier for users to actually adopt the forecast and apply it in the business instead of producing numbers no one uses.

      Yue Li is an expert with Bain & Company’s Advanced Analytics practice. She is based in Los Angeles. 

      関連するコンサルティングサービス
      • アドバンスド・アナリティクス
      コンサルティングサービス
      • Demand Forecasting
      アドバンスド・アナリティクスエキスパートのコメント
      Classify Demand Series to Improve the Forecast

      Each class has different demand signal patterns that can help with model selection.

      詳細
      アドバンスド・アナリティクスエキスパートのコメント
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      詳細
      Demand Forecasting
      Predicting Consumer Demand in an Unpredictable World

      While it's more complicated than ever in the Covid-19 pandemic, don’t abandon forecast modeling. Just change how you do it.

      詳細
      アドバンスド・アナリティクス
      How AI Is Starting to Transform Circular Packaging

      There are 15 AI use cases companies across the value chain can use today to accelerate circularity.

      詳細
      アドバンスド・アナリティクスエキスパートのコメント
      Making Friends with Collinearity: How Driver Interactions Can Inform Targeted Interventions

      Driver analysis helps inform decisions on which drivers deserve the greatest effort.

      詳細
      First published in 8月 2019
      Tags
      • Demand Forecasting
      • アドバンスド・アナリティクス
      • アドバンスド・アナリティクスエキスパートのコメント

      クライアント支援事例

      アドバンスド・アナリティクス A New Demand Forecasting Approach Signals a Bottom-Line Boost

      ケーススタディを見る

      アドバンスド・アナリティクス Advanced Analytics Breakthrough Lets Metals Company Optimize Yield Cost

      ケーススタディを見る

      アドバンスド・アナリティクス Advanced Analytics powers up UtilityCo’s reliability, and customers notice

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス