Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Expert Commentary

      Successful A/B Tests in Retail Hinge on These Design Considerations

      Successful A/B Tests in Retail Hinge on These Design Considerations

      Following a small set of guidelines will result in more meaningful and trustworthy results.

      著者:June Wu

      • min read
      }

      記事

      Successful A/B Tests in Retail Hinge on These Design Considerations
      en
      概要
      • While the concept of A/B testing is straightforward, planning and execution can go awry if marketers don’t carefully consider several steps.
      • Marketers should thoroughly vet the business hypotheses before designing tests, and ensure that the concepts being tested differ significantly.
      • Other key guidelines include moving beyond randomization to optimize sample selection, and measuring results early in the design phase.
      • Testing that follows these guidelines gives marketers greater confidence in the insights and avoids false conclusions.

      Marketers at retail companies often use A/B tests to optimize media allocations for different locations or marketing channels, new store layouts or promotions, web designs, and other investments. While the concept of A/B testing is straightforward, planning and execution can go awry if marketers don’t carefully consider several steps. This commentary covers the guidelines that are critical to effective A/B testing.

      Thoroughly vet the business hypotheses before designing tests

      Always start with business objectives―what the company is trying to prove or disprove.

      Each objective should be articulated as a set of practical statements with clear, measurable key performance indicators (KPIs) such as these:

      • Spending $X to market brand A yields higher sales than spending that same amount on brand B, for a given location (the superiority test).
      • New pricing strategy A yields different sales from existing strategy B (inequality test).
      • Store layout A leads to equal sales as layout B (equality test).
      • Web design A leads to the highest web traffic among alternative options B, C, and D (multiple pairwise superiority test).

      Business objectives need to be measurable so it’s clear before the test starts what will be measured. They also should be practical so that once the test concludes, executives know exactly which actions to take and how.

      The same business objective often is associated with multiple KPIs, depending on the channels used, purposes of the tests, and other variables. For example, in tests of spending on television ads, companies may care about viewership and viewing time; for online search ads or social media, they typically measure impressions; for email campaigns, they look at open rates, click-through rates, and conversion rates. The common question is what evidence they should collect in order to claim a winner.

      Test concepts that have real differences

      For A/B tests to generate meaningful business outcomes, they must create innovative and sometimes fundamentally different offers that will provoke different responses. By contrast, testing variants that are marginally different probably won’t generate meaningful insights.

      Move beyond randomization to optimize sample selection

      Testers should allocate the available sample into look-alike testing and control groups. Most marketers do this with randomization. As discussed in a previous commentary, while randomization is sufficient when the sample size is significantly large (at least 10,000 per group), it’s insufficient when dealing with small numbers, as is common for retail tests looking at markets or stores (typically fewer than 100).

      Fortunately, Bain & Company has created an optimization algorithm that serves this purpose. When the sample size is small, we intelligently allocate each subject into testing and control groups so that all the groups look alike as much as possible. This guarantees that all groups are alike at the baseline, when we don’t do anything to them or we treat all groups equally. Then, if we observe any uplift after the tests where control and test groups are treated differently, we can confidently attribute all the effects purely to our treatment, and don’t have to worry about potential sampling biases.

      Such “intelligent sample allocation” matters because the uplifts we observe are small, often sales increases of 1% to 3%. A small sampling bias could easily confound our treatments and lead to a false conclusion.

      Cover all the marketing channels

      Traditional tests tend to be either offline or online, with few covering both. Yet throughout the Covid-19 pandemic, consumer behaviors have changed significantly, notably with large boosts to online sales and lower sales at many brick-and-mortar stores.

      In this environment, marketers need to design tests to properly measure the effects of the new behaviors, creating strategies to optimize marketing spending and increase overall sales. This raises new challenges, such as sample representativeness and response-frequency biases between online and offline.

      Sample selection thus becomes even more important. If all groups are alike, the likelihood of shopping in a store or online should be equal. If any groups have a different propensity to shop online, that could invite certain advertising or marketing tactics. It’s best to start simple and small, running a series of Agile tests to learn something new each time and gradually build confidence.

      Measure results early in the design phase

      Marketers frequently start considering how to measure results after the campaign finishes. It’s more useful to include it as part of decision making when setting up the test. Since the feasibility of results measurement dictates what kind of tests can be run, and what sample size is affordable, it should be considered carefully when designing the tests. Flawed test designs can’t be fixed later.

      Spend adequate time on sample size

      Sample size and selection is far from a trivial consideration, and deserves the application of the significant body of science.

      What does sample size mean? To answer this question, first define the unit of analysis―the number of markets, stores, customers, clicks, or other variables. The answer will depend on testing objectives and how one wants to measure results. For targeting purposes, the number of markets or stores or both might be important; for results measurement, what matters is the level of measuring and comparing results, which might be the number of customers or clicks.

      Determining the right sample size requires settling on several elements:

      • the units of measurement, depending on the KPI types being measured (continuous vs. binary);
      • the kind of comparisons being run (A/B, A/B/n, where “n” is the number of variants tested, multivariate, and so on);
      • the desired significance level (95% or 90% confidence); and
      • the amount of desired effects (10% or 20% uplift).

      All of these require the proper statistical “power analysis.” In practice, you don’t want to overemphasize statistical significance and thus risk losing opportunities to capture meaningful signals. Sometimes, missing upside potential creates more risks than being safe and not running the test or implementing the results.

      The technical experts overseeing the science must work closely with business owners who have the domain knowledge to codesign sample size. Trade-offs are often needed, based on what’s feasible. For example, logistical requirements may limit the possible sample size. If the available sample isn’t sufficient for testing purposes, that requires adjustments and loosening of criteria, such as dropping the number of testing variations, demanding a larger uplift, or living with a lower confidence in the results significance.

      Simply put, the team must be flexible and design practical tests that can deliver meaningful insights for the particular marketing needs.

      Scope out the test duration

      Tests in retail are usually longitudinal, which requires consideration of how long to run the tests. All else being equal, there will be trade-offs between test duration and the number of stores or observations per day or week. Once testers know they need a certain number of days or weeks to claim success, they must resist the urge to peek early and p-hack premature results, which could easily lead to false conclusions. They should draw insights only after reaching the minimum duration required and seeing results stabilize. The exception to this rule is a ”multiarmed bandit” test, which includes a specific methodology in which early test results directly affect later test execution.

      Designing tests is an art that involves lots of science. Done right, testing can lead to insights that open new possibilities with confidence. By contrast, tests that are poorly designed due to various constraints will yield lower confidence in the insights or even false conclusions.

      The author thanks Bain colleagues Paul Markowitz and Richard Lichtenstein for their review and contributions to this commentary.

      著者
      • Headshot of June Wu
        June Wu
        Expert Associate Partner, Boston
      関連業種
      • 小売
      関連するコンサルティングサービス
      • Digital
      • Modern Marketing
      • アドバンスド・アナリティクス
      • 顧客戦略、マーケティング
      コンサルティングサービス
      • Experimentation at Scale
      アドバンスド・アナリティクス
      Why Every In-Market Test Benefits from the Right Sample-Selection Strategy

      These five strategies cover the majority of testing situations.

      詳細
      Marketing Analytics
      How Can Financial Services Marketers Keep Up with Their Customers?

      Covid-19 has raised the value of faster decision making informed by a test-and-learn approach.

      詳細
      アドバンスド・アナリティクスエキスパートのコメント
      Defining the Intelligent Enterprise

      A recap from DeepLearning.AI’s AI Dev 25 × NYC.

      詳細
      小売
      The 2026 Retail Executive Agenda

      Here are letters to the C-suite to help strengthen strategy, catalyze collaboration, and expand value creation in the AI age.

      詳細
      Experimentation at Scale
      Predictive Forecasting or Scheduling

      By analyzing current and historical data, companies can better predict future demand or supply, as well as functional and operational metrics.

      詳細
      First published in 2月 2021
      Tags
      • Digital
      • Experimentation at Scale
      • Marketing Analytics
      • Modern Marketing
      • アドバンスド・アナリティクス
      • アドバンスド・アナリティクスエキスパートのコメント
      • 顧客戦略、マーケティング
      • 小売

      クライアント支援事例

      顧客戦略、マーケティング Inspiring retail employees to think and act like owners

      ケーススタディを見る

      業績改善 Retailer's performance improvement boosts shareholder value

      ケーススタディを見る

      Digital Omnichannel strategy boosts fashion company

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      Digital is a service mark of Bain & Company, Inc.

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス