Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • Blog: Inside Bain
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      論説

      Tackling AI's Unintended Consequences

      Tackling AI's Unintended Consequences

      In a world shaped by artificial intelligence, human leadership matters more than ever.

      著者:Chris Brahm

      • min read
      }

      論説

      Tackling AI's Unintended Consequences
      en

      Whether or not they know it, nearly everyone has had an experience that exposes just how dependent we have become on artificial intelligence (AI). It often comes in the back seat of a car.

      That’s where I was a few months ago, sitting in a rideshare from suburban Scarsdale, New York, to New York City. The driver had recently emigrated from Nepal, and his ability to quickly find work greatly illustrates how ride-sharing platforms open economic opportunities. Once upon a time, my driver would have had to learn the area well before he could drive a customer from place to place. Now AI mapping had him hard at work just weeks after landing.

      The New York metropolitan region is one of the most complicated urban areas in the world, however, and even with the map, my driver struggled. After making a few illegal maneuvers and an unplanned stop for gas, he did get me to my destination, but I exited the car thinking that I’d once had the privilege to expect a far more capable driver.

      As AI infiltrates more of our experiences and organizations, it’s important to recognize not only its many benefits but its unintended consequences as well. AI protects us from known and unknown threats, helps us connect to one another, and provides better answers faster and cheaper than humans do. And, of course, it’s great that AI frees us from routine tasks such as reading a map. But are we recognizing and addressing the loss of human expertise that accompanies that new freedom?

      For business leaders and others investing in the technology, there are certain high-gain questions that can help them begin to grapple with leadership in the AI age—including how to manage the unique properties and risks of AI, bring clarity and focus to its deployment, and ultimately make better application of it (see Figure 1).


      tackling-unintended-consequences-fig01_embed

      There are also a half-dozen risks that should inform those conversations as well.

      Risk No. 1: AI can create hidden errors


      Unlike traditional rules-based programming, AI models are statistical representations of the world. They provide answers based on their learning, but they are imperfect. The opacity of many AI models and their ability to quickly scale make it possible for real errors to remain hidden from view. We are familiar with chatbots unleashed on social media that pick up racist views from their data set because that example is on public display. But what about autonomous driving or flying systems? Their training data is growing exponentially and the models based on it are improving dramatically, yet errors in those algorithms continue to be discovered, sometimes only after loss of life.

      Risk No. 2: AI can lead to a loss of skill, critical thinking and understanding


      It’s not only new rideshare drivers who are in danger of becoming excessively reliant on AI. One Silicon Valley engineer recently stated that his site’s recommendation algorithm makes it so that his team doesn’t have to think as much. Whether you run a finance department of a company that relies on algorithmic sales forecasts or you are a salesperson getting leads from one, it’s dangerous to lose an understanding of the fundamentals of your business and what’s truly driving demand.

      Risk No. 3: AI can open new hazards


      Similar to human workers, algorithms are subject to manipulation. But while a worker is observed by management and makes relatively few decisions in the course of his or her day, an algorithm will make many decisions—often unseen. Spammers learned long ago how to get the best of machine learning systems, and there’s every reason to believe that hackers are only getting started on AI. Look at the election-season manipulations of social media newsfeeds or the cottage industry of search engine optimization. Algorithms can be and are being exploited. As algorithms take on broader roles—setting a price on an e-commerce site, determining a car insurance rate, hiring someone—cause for concern increases. Now managers must anticipate how an algorithm might be manipulated and adjust accordingly.

      Risk No. 4: AI can institutionalize bias


      Most AI machines learn by studying examples in curated data sets. AI experts may understand how an algorithm reached its conclusion, or it may be a black box that is mysterious even to experts in the field. This lack of transparency raises concerns about bias, since any algorithm trained on historical data will logically come to conclusions that reflect bias present in that data. In the mortgage industry, for instance, lenders had better be certain their algorithms conform to regulations that they not discriminate based on characteristics such as race and gender. Bias does not have to be so clearly wrong for it to lead to bad outcomes, either. In customer analytics, for example, an algorithm trained on data culled from an existing customer base will favor those customers’ preferences. But what about the tastes of the many people not yet served? With algorithms now involved in everything from hiring to the delivery of social services to the needy, one very real risk is simply repeating how things have always been done.

      Risk No. 5: AI can contribute to a loss of empathy

      As more companies use bots and other machines for consumer interactions, organizations run the risk of losing touch with their customers. To executives, the concerns of workers managed by algorithms, as rideshare drivers are today, may feel similarly remote. Distance could lessen managers’ empathy and ability to listen to either group, but it doesn’t have to. Though I fly often for work, I have taken just one Virgin Atlantic flight over the past few months, and it was delayed 45 minutes. When I landed, the airline’s systems had already spotted the issue and sent an email apology and a voucher for a discount on my next flight. Rather than feeling irritated by the experience, it left me rather impressed.

      Risk No. 6: AI can cause a loss of control


      The convenience and speed of AI-driven decision making are attractive, but sometimes humans need to be involved. There is no clearer example than the integral role that human drone pilots play in the remote bombing of military targets. Today, it’s accepted that human judgment must be involved, but as we grow more accustomed to this technology, it is plausible that could change. Will that be OK? Many such difficult questions will arise around AI’s erosion of human control. It will be essential that leaders grapple with them.

      Governance matters. Top executives need to be involved in establishing the goals and guardrails around the AI that is increasingly enabling their businesses. For decades, financial services organizations that rely heavily on credit algorithms have been expected to stringently govern risk management; a similar elevation of AI governance may now be needed for organizations broadly embedding the technology.

      Every materially important algorithm in the business should also have a product manager—a human reviewing and testing the algorithm, auditing its outcomes, and assessing and improving its performance.

      Strong, human listening systems are essential. The key constituents of an important algorithm must be regularly solicited for input and feedback, whether they are customers or employees or other partners. Empathy must guide the management and deployment of any algorithm. The organization must be able to recognize when a reset is necessary.

      Featured topic

      More Digital Transformation Insights

      Digital transformation is a topic of rich and vital discussion in boardrooms and among executive teams around the world. Here are some insights on what it takes to lead and deliver a digital transformation.

      How this plays out for any organization depends on the industry and context. Each will have its own particular AI opportunities and potential pitfalls. There are, however, certain questions that can help any executive or board member stimulate the right conversation around AI:

      • How well does this algorithm match the essential tenets of our business? How will it work with those key principles?
      • Who is going to ensure that we secure the benefits and not the downsides from its deployment?
      • Who are the key constituents affected by this algorithm? Are we soliciting their feedback now? How will we be sure we continue to seek their insight in the future?
      • Who is going to operate the algorithm? What are their goals for increasing its impact and innovation?

      The pervasiveness and scalability of AI mean that algorithms can rapidly affect millions. Competition and progress require its use, but technology is neither necessarily moral nor intrinsically improving. That’s up to the humans who leverage it. In a world shaped by AI, human leadership matters more than ever.

      Chris Brahm is a Bain partner based in the San Francisco office; he leads the firm’s Global Advanced Analytics practice.


      tackling-unintended-consequences-fig01_full
      著者
      • Headshot of Chris Brahm
        Chris Brahm
        Alumni, San Francisco
      関連するコンサルティングサービス
      • アドバンスド・アナリティクス
      産業財、サービス
      How Robot Taxis Will Change Mobility Over the Next 10 Years

      Autonomous cars could make up 30% of the market by 2030.

      詳細
      デジタルトランスフォメーション
      Is Türkiye Ready for Generative AI?

      A new study, in collaboration with TÜSİAD, investigates the AI readiness of Turkish business and the biggest barriers to achieving scale and maturity.

      詳細
      アドバンスド・アナリティクス
      Retailers Have a Secret Weapon in AI-Powered Shopping: Trust

      US consumers would be more comfortable with AI buying on their behalf if a familiar retailer were involved.

      詳細
      デジタルトランスフォメーション
      Choose to Win: The Five Decisions That Make or Break Banking Modernization

      Banking modernization involves more nuance than the binary-bet caricature of an existential “rip-and-replace” gamble versus a cosmetic refresh.

      詳細
      アドバンスド・アナリティクス
      Four Ways Leaders Can Make AI Redesigns Stick

      As companies redesign to scale AI, these four lessons help leaders ensure their organizations actually live the new operating model.

      詳細
      First published in 4月 2018
      Tags
      • アドバンスド・アナリティクス
      • デジタルトランスフォメーション

      クライアント支援事例

      アドバンスド・アナリティクス Analytics Powers a Software Company’s Bold Revenue Goals

      ケーススタディを見る

      顧客戦略、マーケティング Direct marketing excellence through experimental design

      ケーススタディを見る

      アドバンスド・アナリティクス Analytics guide an entertainment company's growth strategy

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス