Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • Blog: Inside Bain
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      記事

      What is Responsible AI?

      What is Responsible AI?

      Responsible AI (RAI) refers to the development, deployment, and oversight of artificial intelligence systems in ways that are ethical, transparent, safe, and aligned with legal and societal expectations.

      • min read
      A close-up of a brass balance scale placed in front of an open laptop. The laptop screen glows with a bright blue light, creating a silhouette effect on the scale's chains and pans. }

      記事

      What is Responsible AI?
      en

      Responsible AI provides a thematic framing for balancing the opportunities and risks associated with AI across an organization’s operations. The concept applies to a wide range of automated decision-making systems, including traditional machine learning (ML) and generative and agentic AI technologies, with each type introducing different levels of complexity and potential impact.

      The rise of generative AI, in particular, has accelerated interest in Responsible AI because its broad capabilities (such as content generation, reasoning across unstructured data, and interaction through natural language) expand the scope of use cases and associated risks. Boards, regulators, consumers, and employees increasingly expect organizations to manage AI systems in ways that respect rights, minimize harm, and align with organizational and societal values.

      How Responsible AI works

      Responsible AI operates through a combination of aspirations, governance, practices, and cultural foundations. This structure organizes how AI systems are conceived, designed, deployed, and monitored. Key mechanisms include:

      Principles and commitments

      Organizations commonly anchor Responsible AI in principles including fairness, inclusion, transparency, explainability, reliability, safety, privacy, ownership, accountability, and societal considerations. These commitments help frame acceptable system behavior and clarify expectations for all AI stakeholders.

      Governance structures

      Responsible AI governance may include oversight councils, review committees, or specialized leadership roles. Governance establishes decision rights, escalation paths, and organizational AI commitments. Boards often oversee high-level alignment with strategy, risk appetite, and regulatory obligations.

      Life-cycle oversight

      AI systems are managed across a full life cycle, from concept and design through development, testing, integration, deployment, and ongoing maintenance. Control points are used to evaluate purpose, risk, documentation, and system performance. This approach supports risk identification and mitigation across both individual AI systems and a company’s overall AI portfolio.

      Risk identification/mitigation

      Responsible AI includes processes for assessing inherent risks, applying and testing controls, and evaluating residual risk. These assessments span legal, operational, strategic, and reputational dimensions.

      Culture and capability development

      To effectively embed Responsible AI, an organization must address training, communication, and reinforcement mechanisms that promote awareness, appropriate behaviors, and continuous improvement.

      Responsible AI approaches

      Organizations can choose from, or combine, several approaches to Responsible AI depending on the maturity of their capabilities, industry needs, and the regulatory environment.

      Principles-based approaches

      Focused on high-level commitments that define expectations for fairness, transparency, safety, privacy, compliance, and societal benefit. These principles will most likely need to be modified to ensure they remain robust as technologies and regulations evolve.

      Governance-driven approaches

      Prioritizes formal oversight bodies, policies, and procedures that direct how AI systems are reviewed, approved, and monitored. These may include dedicated AI councils or committees to centralize decision-making and ensure consistency.

      Technical and life-cycle approaches

      Comprises testing frameworks, monitoring dashboards, model documentation, guardrails for generative models, and tools that align model development with organizational commitments. These approaches support accuracy, reliability, explainability, and safe operation.

      Regulatory and standards-based approaches

      Designed to ensure compliance with emerging standards and region-specific regulations such as the EU AI Act, US sectoral rules, and global frameworks from ISO, OECD, and NIST. Many regulations adopt risk-based categorizations that define required controls for different types of AI systems.

      Where Responsible AI is applied

      Responsible AI practices are applicable wherever AI systems influence decisions, generate content, or support critical workflows, including both the private sector and public services.

      Business operations

      Responsible AI applies whenever AI supports forecasting, workflow automation, risk assessment, procurement, and workforce processes, requiring attention to accuracy, fairness, and operational resilience.

      Customer and citizen interactions

      Conversational systems, recommendation engines, contact-center assistants, and self-service tools often require safeguards against biased outputs, misinformation, or inappropriate disclosure of personal information.

      Industry-specific use cases

      • Financial services: credit decisioning, fraud analysis, and compliance monitoring
      • Healthcare: decision support, triage, imaging, and clinical documentation
      • Retail: personalization, pricing, service automation
      • Industrial: predictive maintenance, routing, quality analytics

      Across these applications, organizations must assess value potential, system complexity, and associated risks as part of strategic evaluation.

      Benefits of Responsible AI

      Responsible AI offers several broadly recognized benefits:

      • Improved trust and acceptability by aligning system behavior with ethical and societal norms
      • Higher quality and reliability due to structured testing, monitoring, and documentation
      • Enhanced risk management across legal, operational, and compliance domains
      • Better organizational clarity about how AI supports strategy and where limitations or safeguards are needed
      • Stronger alignment with evolving regulations and industry standards

      Challenges and considerations

      The deployment of modern AI systems introduces several challenges:

      Complex risk landscape

      Generative AI can amplify existing risks and introduce new ones, including erroneous information (hallucinations), toxicity, ambiguity in ownership, security vulnerabilities, and potential social harms.

      Regulatory divergence

      Regulatory frameworks vary across regions, with different emphases on transparency, safety, privacy, and accountability. Compliance expectations and requirements may vary based on system classification, sector, or geography.

      Data and model complexity

      The shift from structured to unstructured and real-time data increases challenges in provenance, privacy, and quality management. Generative AI systems often require additional controls for prompts, knowledge retrieval, and content moderation.

      Organizational capabilities

      Responsible AI may require new skills, roles, and operating models, along with coordinated governance spanning business units, risk functions, and technology teams.

      Cultural alignment

      Sustaining Responsible AI depends on awareness, behavioral reinforcement, and continuous training across the workforce.

      Current trends and future outlook

      Several trends are shaping the future of Responsible AI:

      • Growth of foundation and generative models, increasing both possibility and risk across use cases
      • Convergence of global standards, including ISO/IEC initiatives, industry frameworks, and international cooperation
      • More active board oversight, with some organizations establishing technology or science committees to guide AI transformation and risk management
      • Automation of governance, including AI registries, monitoring platforms, and integrated evaluation tools
      • Greater focus on societal and environmental impacts, reflecting expectations from communities, regulators, and stakeholders

      As organizations expand AI adoption, these trends are expected to influence both internal practices and industry-wide norms.

      Getting started with Responsible AI

      Foundational activities often include defining Responsible AI commitments, clarifying the organization’s risk appetite, reviewing planned AI uses, and updating governance structures.

      Organizations should also examine their capabilities, conduct readiness assessments, and establish basic documentation and oversight mechanisms that can scale as adoption grows. These early actions will help create a shared understanding of expectations and support progressive capability uplift.

      Building momentum with Responsible AI

      As noted above, Responsible AI encompasses the principles, governance structures, technical safeguards, and cultural foundations that enable organizations to deploy AI systems safely and transparently. As the deployment of AI technologies accelerates, Responsible AI provides a structured way to balance value creation with ethical, operational, and regulatory considerations.

      It’s worth noting that organizations with more developed Responsible AI capabilities have achieved higher profit impact from AI-powered use cases compared with those without robust RAI capabilities.

      We invite you to learn more about how we approach Responsible AI both internally and through our AI consulting work with clients. For examples of how companies across industries are using AI today to enhance (and often reinvent) virtually every facet of their operations to gain a winning edge, explore our AI client results.

      関連するコンサルティングサービス
      • アドバンスド・アナリティクス
      コンサルティングサービス
      • Artificial Intelligence
      Bain Essentials
      What Is Agentic AI?

      The next wave moves beyond generative AI with proactive intelligent agents that work through steps toward a goal.

      詳細
      Artificial Intelligence
      Want More Out of Your AI Investments? Think People First

      To unlock AI’s exponential productivity potential, companies must modernize workflow and workforce in tandem.

      詳細
      アドバンスド・アナリティクス
      Life Sciences’ AI Momentum Requires a Workforce Redesign

      AI scalers aren't waiting for new talent—they're building it.

      詳細
      Artificial Intelligence
      How Agentic AI Is Reshaping Customer Behavior in Italy and Europe

      As global AI use increases, the challenge lies in ensuring users are appropriately empowered by the technology.

      詳細
      アドバンスド・アナリティクス
      Retailers Have a Secret Weapon in AI-Powered Shopping: Trust

      US consumers would be more comfortable with AI buying on their behalf if a familiar retailer were involved.

      詳細
      First published in 12月 2025
      Tags
      • Artificial Intelligence
      • Bain Essentials
      • アドバンスド・アナリティクス

      クライアント支援事例

      A Beauty Company Enables Always-On Brand Acceleration

      ケーススタディを見る

      Digital Reimagining Insurance for the AI Era

      ケーススタディを見る

      アドバンスド・アナリティクス Analytics guide an entertainment company's growth strategy

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス