Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • Blog: Inside Bain
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      論説

      Why AI Stumbles Without a Solid Data Strategy

      Why AI Stumbles Without a Solid Data Strategy

      Most AI pilots stall before they scale. Data strategy and governance are not new, but they’re even more critical in the AI age.

      著者:Roger Zhu, Willem Vervarcke, Bill Groves, Alex Kling, and Bharat Bansal

      • min read
      }

      論説

      Why AI Stumbles Without a Solid Data Strategy
      en
      概要
      • Most AI pilots don’t scale to full production, often because of poor data quality, unclear ownership, and inconsistent governance.
      • AI makes data more valuable but also more complex, since it relies on both structured and unstructured data, including audio, images, and video.
      • Leading organizations treat data as a strategic asset, building reusable data products, clear ownership models, and future-ready architecture to unlock AI’s full value.
      • They also have a clear data vision, knowing which data assets are unique, proprietary to them, and critical to staying ahead of the competition.

      AI is generating big hopes and even bigger investments. But many initiatives aren’t making it past the pilot stage. A widely quoted study by MIT reported in late August that 95% of AI initiatives stall before moving beyond the pilot stage. Bain’s research finds that a third or more pilots move on to production, depending on the use case. But both studies find that most use cases don’t advance past the pilot.

      The fundamental gap is not necessarily in the capabilities of AI models but rather in deficiencies regarding how they’re deployed. Many companies have yet to invest—or are just beginning to invest—in critical enablers for AI value realization, including end-to-end process redesign, disciplined AI governance, solid change management, executive commitment, and an effective data strategy.

      Weaknesses in managing organizational data—including poor data quality, inconsistency, weak compliance, and insufficient accessibility—have dogged deployment of digital initiatives since well before the AI age. Pilots often succeed because they’re built on offline, nonproduction data sets that have been manually cleaned. But when it comes time to scale those pilots across the enterprise, underlying data issues quickly resurface, slowing or even halting progress.

      With the advent of AI foundational models, there were hopes that AI would become so sophisticated and capable at handling messy and unstructured data that managing and governing data quality would be a thing of the past. That may still happen in the future, but we’re far from that today. While AI can assist with discrete elements (such as identifying quality issues or helping flag inconsistencies), the basic rule of “garbage in, garbage out” remains a feature of AI as much as any other digital solution.

      The hard work of building a strong data foundation matters, and it’s more important than ever.

      AI has made data more valuable but also more complex. Generative AI makes use of structured and unstructured data, including audio, images, and video. Most organizations haven’t historically governed unstructured data, resulting in some significant data quality challenges. For example, information retrieval in contact centers, particularly in complex enterprise environments, often run into issues with outdated or conflicting sources of information for the same prompt, resulting in inaccurate answers from AI.

      As organizations deploy agentic AI, this foundation becomes nonnegotiable. These agents don’t just analyze data; they act on it, powering workflows, making decisions, and handling customer tasks autonomously. Without reliable, well-governed data as a single source of truth, agentic AI risks acting on flawed inputs, undermining both performance and trust.

      The principles of good data strategy and governance are well established, with clear best practices for how to develop a robust strategy within both centralized and decentralized organizations. Now is the time to reinvigorate and enhance those principles and practices to ensure successful AI deployment (see Figure 1).

      Figure 1
      Good data strategy addresses quality and process issues that can limit the success of AI deployment
      visualization
      visualization
      Source: Bain & Company

      The legacy barriers holding back data strategy

      As data becomes more integral to business performance, underlying challenges such as fragmentation, complexity, and misalignment become harder to ignore. Solving them requires a shift from legacy thinking to enterprise-wide data strategy and ownership. But many organizations are still stuck among a range of roadblocks.

      • AI efforts frequently launch as standalone initiatives, only to realize that the data demands far exceed what’s needed for traditional reporting. Without a coordinated data strategy, progress stalls.
      • Data lakes have focused on collecting large volumes of data, but many have become complex, monolithic platforms in which data quality is hard to manage and useful data sets are difficult to find and use effectively.
      • Ownership is often unclear, defaulting to system administrators or data platform teams. Without business-aligned ownership, governance lacks direction and fails to connect to real-world needs.
      • Governance may be informal or limited to a few core data sets. But today’s analytics and AI initiatives require broader, more robust governance that is jointly managed by both the business and data technology.

      Data strategy foundations for scaling AI

      AI is only as strong as the data behind it. Leading organizations treat data like the strategic asset it is—prioritizing value, establishing clear ownership, and building the architecture and governance needed to turn high-quality data into a lasting source of competitive advantage. Successful transformations share several important principles.

      • Prioritization tied to value: Clarify which data assets create a competitive advantage, and develop data initiatives that fuel strategic success.
      • Data product model: Build data products—namely, curated data sets built for specific purposes—to enable those high-value data initiatives. Data products should be discoverable and interoperable so that analysts and engineers can use them as building blocks that can be transformed and combined to unlock new sources of value.
      • Ownership and accountability: Organize high-value data into domains, and assign owners who are accountable for making sure that the data remains high quality and accessible. Assign ownership to data products as well, especially those data products built on data from multiple domains. Apply ownership pragmatically; not all domains or data assets need to be governed with the same level of rigor.
      • Enterprise alignment: Coordinate governance across teams and business units to unlock initiatives that draw from disparate data sources. Develop enterprise policies on how data will be documented and shared, and create mechanisms to agree on critical data definitions. Establish and agree on decision rights and escalations to resolve any conflicts between teams.
      • Investment focused as needs evolve: As tech teams capture, curate, and conform data, emerging use cases should guide where resources go. Data management is continuous, and teams must stay agile, shifting focus to the assets that matter most.
      • Governance processes to improve data quality: Embed good governance into workflows, and ensure a regular cadence of meetings among business and technology leaders to review data quality and decide how to continue improving it. Encourage frontline teams to flag quality concerns, and incorporate user feedback into a continuous loop. Business and technology teams work together to develop and manage robust policies, standards, and processes to ensure data quality, security, and accessibility.
      • Data architecture: A forward-looking data architecture will support more dynamic data products and harness an expanding range of data types. It will equip agents to act smarter, surface sharper insights, deliver real-time recommendations and predictions, and enable more personalized, multichannel engagement with both employees and customers. Built-in governance and trust, along with the flexibility to scale, will ensure that data flows securely and seamlessly across the enterprise, turning high-quality, accessible data into a true engine of innovation and growth.

      One North American utility company showed how strengthening data foundations can improve the ability to extract value from analytics and improve efficiency. The utility had struggled with its fragmented ownership of data, inconsistent quality, and limited documentation. To turn things around, it began by mapping data maturity across 12 dimensions, developing a unified taxonomy and launching pilots to document key data assets and lineage (i.e., where it’s created and how it moves across its life cycle). A first phase closed critical data gaps across more than 20 business-critical use cases. A second phase operationalized governance by embedding stewardship into workflows and scaling lineage and quality tracking across domains. These initiatives delivered real results—specifically, a 20% to 25% gain in efficiency over the first year—helping to recover about $10 million from billing discrepancies and improving accuracy in forecasting customer load.

      Successful AI depends on data strategy

      A robust data strategy, governance, and operating model are no longer just nice to have; they’re core enablers of AI value realization. To deliver on the promise of AI, every stage of the data life cycle—from capture and processing to AI enablement and end-user engagement—requires intentional design, governance, and active stewardship of curated data products.

      This doesn’t happen organically. It calls for deliberate modernization—evolving team capabilities, building organizational readiness, strengthening collaboration between business and tech, and upgrading both architecture and technology. A strong data strategy lays out these goals clearly, and it charts a pragmatic, actionable roadmap to reaching them.

      著者
      • Headshot of Roger Zhu
        Roger Zhu
        パートナー, Boston
      • Headshot of Willem Vervarcke
        Willem Vervarcke
        Expert Associate Partner, Los Angeles
      • Headshot of Bill Groves
        Bill Groves
        パートナー, New York
      • Headshot of Alex Kling
        Alex Kling
        Senior Manager, Boston
      • Headshot of Bharat Bansal
        Bharat Bansal
        パートナー, London
      関連するコンサルティングサービス
      • Digital
      • IT
      • アドバンスド・アナリティクス
      コンサルティングサービス
      • Artificial Intelligence
      • Data and Analytics Transformation
      • Digital Strategy
      • Digital Transformation
      小売
      Data Strategy in Retail: The Gen AI Tipping Point

      A Q&A on the need for an enterprise-wide approach to data and analytics.

      詳細
      CIO Insights
      The New AI Stack: Speed, Scale, and Real-World ROI

      AWS re:Invent 2025 demonstrated how agents, fine-tuned models, and custom silicon are redefining performance and productivity for enterprises.

      詳細
      CIO Insights
      Want More Out of Your AI Investments? Think People First

      To unlock AI’s exponential productivity potential, companies must modernize workflow and workforce in tandem.

      詳細
      Artificial Intelligence Insights
      Reimagining Merchandising in the Era of Agentic AI

      The future of merchandising is not better analysis, but faster, smarter execution—and agentic AI is what makes that possible.

      詳細
      CIO Insights
      Life Sciences’ AI Momentum Requires a Workforce Redesign

      AI scalers aren't waiting for new talent—they're building it.

      詳細
      First published in 11月 2025
      Tags
      • Artificial Intelligence
      • Artificial Intelligence Insights
      • CIO Insights
      • Data and Analytics Transformation
      • Digital
      • Digital Strategy
      • Digital Transformation
      • IT
      • アドバンスド・アナリティクス

      クライアント支援事例

      A Beauty Company Enables Always-On Brand Acceleration

      ケーススタディを見る

      Full Potential Transformation An Airline’s Journey from Insolvency to Profitability

      ケーススタディを見る

      Digital Tata Steel Helps Home Builders Break New Ground

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      Digital is a service mark of Bain & Company, Inc.

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス