Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      Article

      Using AI to Quantify Biopharma’s Execution Risk in Clinical Trials

      Using AI to Quantify Biopharma’s Execution Risk in Clinical Trials

      Bain and AppliedXL are using real-time operational signals to help biopharma companies increase clinical trial productivity and enhance outcomes.

      著者:Eli Weinberg, Francesco Marconi, and Brady O’Brien

      • min read

      Article

      Using AI to Quantify Biopharma’s Execution Risk in Clinical Trials

      Speed in clinical trials is non-negotiable—each day of delay in a clinical trial can reduce future sales by an estimated $500,000, per Tufts Center for the Study of Drug Development. Meanwhile, trials continue to become more complex, and competition is only increasing.

      Written in collaboration with

      Written in collaboration with

      AppliedXL_Logo_55px-v2.png


      Biopharma companies aspire to make data-driven decisions around their clinical programs. To that end, they track many measures, including a broad set of internal and external financial and scientific considerations that affect R&D productivity. But one critical area remains relatively underanalyzed: operational performance, or how sponsors design and run timely, predictable clinical programs.

      One challenge in judging operational performance is the lack of consolidated clinical intelligence. Traditional methods rely on slow, manual tasks—sifting through massive unstructured databases, consolidating findings, and relying on expert networks for added context.

      AI is poised to change that. By integrating diverse data sources efficiently, AI can provide actionable clinical intelligence, answer specific queries, and uncover hidden patterns. Bain and AppliedXL have collaborated to create a new AI-powered approach that combines language models with human expertise to accelerate decision making and optimize clinical strategy.

      Turning data into actionable insights

      AppliedXL’s AI system continuously monitors a wide range of clinical trial events and performance metrics, organizing them into a readily queryable format. It captures risk signals and shifts across more than 100 categories, including irregular status progressions, timeline delays, and enrollment fluctuations.

      With AI and public data, we can generate a real-time snapshot of a single trial, providing a comprehensive view of the overall progress and potential risks, such as those in Incyte’s ruxolitinib program for atopic dermatitis (AD) (see Figure 1).

      Figure 1
      AI generates a real-time snapshot of clinical trials

      注 Clinical program data from analysis of Incyte Corporation’s public corporate and clinical filings; clinical program classifications are AI-inferred based on drug characteristics, trial design, and stated objectives

      Sources: AppliedXL; Incyte Corporation public filings

      AppliedXL’s risk detection has already demonstrated predictive power in identifying program stoppages or failures. For example, trials delayed by more than 150 days are 41% more likely to be terminated, according to a report from AppliedXL and Frank David, professor of the practice of biotechnology at Tufts University. Similarly, among trials that experienced a substantial decrease in enrollment, 53% were stopped early rather than following their expected trajectory to completion.  

      The benefits of this AI-powered approach are twofold:

      1. A better understanding of operational performance and risks by disease area. Sponsors can assess trial complexity to make investment decisions and design trials that anticipate unique roadblocks.  
      2. Sharper measurement and benchmarking of clinical execution. Companies can analyze their trial delivery performance, compare against competitors, and identify opportunities for improvement.

      Armed with AI insights, leading biopharma companies will streamline clinical development, cut costs, and speed up the journey from discovery to market.

      Introducing PRIME: A smarter approach to trial execution

      AI alone isn’t enough—human oversight is essential for high-stakes clinical decisions. To help organizations tap into AI’s power while keeping human judgement at the center, we developed PRIME, a five-step framework for clinical strategy.

      P: Program identification

      • AI action: Groups clinical trials into programs based on commonalities in drug characteristics, targeted indications, and trial objectives.
      • Outcome: Concise program descriptions and rapid insight into research strategy, risks, and progress.
      • Why AI? Traditionally, linking trials to specific programs has been a tedious, manual process.

      R: Risk monitoring and competitor mapping

      • AI action: Detects potential problems across nearly 100 event categories with real-time data monitoring.
      • Outcome: The insights needed for timely, informed decision making on trial risks and the competitive landscape.
      • Why AI? Managing the volume and complexity of clinical trial updates is laborious for analysts.

      I: Identification of drug targets

      • AI action: Analyzes diverse data sources to pinpoint drug targets, including molecules or pathways crucial in disease progression.
      • Outcome: A dynamic repository for identifying novel targets, exploring drug repurposing opportunities, and understanding biological mechanisms.
      • Why AI? Dispersed data sources and rapid scientific advancements make manual tracking costly and time consuming.

      M: Market- and therapy-level analysis

      • Human action: Interpret AI-generated insights at both the market and therapy levels to design and plan clinical trials.
      • Outcome: Robust, data-backed clinical trial plans aligned with the identified programs and targets.
      • Why humans? Analysts bring deep therapeutic area expertise, an understanding of clinical nuances, and the context of real-world clinical practice, ensuring trial designs are clinically relevant and strategically sound.

      E: Execution strategy development

      • Human action: Perform company comparisons and monitor clinical trial performance.
      • Outcome: A comprehensive, adaptive, and optimized execution strategy.
      • Why humans? Analysts provide critical insights into competitive positioning, strategic adjustments, stakeholder perspectives, and nuanced performance metrics.

      AI in action: Risk monitoring and competitor mapping

      To illustrate how AppliedXL and the PRIME approach work in practice, we analyzed trial execution across three disease areas: AD, non-small cell lung cancer (NSCLC), and heart failure (HF). We looked at all US-based trials across all phases—while removing outliers, such as those involving extreme enrollment shifts—to determine the percentage of trials delayed by disease area, the number of changes to timelines, the percentage of trials with an enrollment increase, and more.

      What does the disease area data reveal? NSCLC trials experience the longest and highest share of trial delays, though AD trials see the most timeline changes. While the share of trials with enrollment increases is roughly consistent across NSCLC and AD, NSCLC shows almost three times the average increase in enrollment size (see Figure 2).

      Figure 2
      Trial delays and enrollment trends vary slightly by disease area

      注 Percentage of trials delayed and with an enrollment increase is an average of top companies and a grouping of other peers; multiple NSCLC trials report an enrollment increase above 100%; NSCLC average percentage enrollment increase excludes one outlier trial that was canceled after enrolling only two patients

      Sources: AppliedXL; Bain analysis

      Instead of an arduous manual analysis, AI helps us quickly reach a few conclusions. There’s only a slight difference in overall clinical trial execution and operation risk. The trends in delays and enrollment changes are likely a reflection of disease complexity and evolving competition for patients, as well as the rapidly evolving trial landscape. NSCLC’s diverse subtypes and molecular profiles could affect trial design, potentially requiring adjusted eligibility criteria.

      Next, we aggregated measures by sponsor. By creating a total risk score to capture the aggregate frequency and magnitude of delays and enrollment changes, we found a notable difference in trial execution risk at the company level (see Figure 3).

      Figure 3
      Execution risk for clinical trials varies across top companies

      注 Accounts for US-only clinical trials conducted from 2014–2024; risk score is aggregate of percentage of delayed trials, average frequency and magnitude of change in delayed trials, percentage of trials with an enrollment increase, and average frequency and magnitude of change in trials with an enrollment increase

      Sources: AppliedXL; Bain analysis

      We also found that some companies have consistent risk scores across disease areas (see Figure 4). Therefore, the differences in performance between companies may be due to different “postures” toward trial planning and delivery. Some favor a “zero-defect” approach, planning conservatively and minimizing changes. Others embrace agility, moving fast and making changes as needed. By understanding their own posture and others’, firms can quickly take a pulse of the competitor landscape, compare their trial execution strategies, and refine their approach accordingly.

      Figure 4
      Some companies have consistent trial execution risk scores across disease areas
      Sources: AppliedXL; Bain analysis

      AI-powered insights, combined with human expertise, are redefining clinical trial strategy. With AppliedXL and the PRIME approach, we can help clinical development and operations leaders benchmark performance, improve trial design and planning, assess trial execution efficiency before entering new therapeutic areas, and make more confident investment decisions. In today’s high-stakes clinical landscape, speed and precision are everything—and AI is key to unlocking both.

      About AppliedXL

      AppliedXL is building the world’s first fully autonomous AI analyst, engineered to deliver real-time, research-grade insights that meet the standards of domain experts. Starting in the biopharma sector, AppliedXL equips decision makers with critical information—before it becomes news

      著者
      • Headshot of Eli Weinberg
        Eli Weinberg
        パートナー, New York
      • Headshot of Francesco Marconi
        Francesco Marconi
        Co-founder and CEO, AppliedXL, New York
      • Headshot of Brady O’Brien
        Brady O’Brien
        Head of GenAI Content, AppliedXL, New York
      関連業種
      • ヘルスケア
      • 製薬
      関連するコンサルティングサービス
      • Digital
      • アドバンスド・アナリティクス
      コンサルティングサービス Related
      • Artificial Intelligence
      ヘルスケア
      Close-up of several small, capped vials arranged in a circular holder, likely in a laboratory setting.
      A Pharma Company’s Finance Function Gets a Shot in the Arm

      A financial transformation is powered by a strategic end-state vision and a flexible approach.

      詳細
      Artificial Intelligence Insights
      Hand holding a green tube in front of shelves filled with similar green bottles in a store.
      A Beauty Company Enables Always-On Brand Acceleration

      AI-powered automation transformed a high-touch process into a continuous growth engine.

      詳細
      Artificial Intelligence
      Three individuals collaborating, placing colorful sticky notes on a glass wall. One person holds a tablet.
      Reimagining Insurance for the AI Era

      While 95% of companies investing in AI haven't seen measurable impact, InsuranceCo is on track to beat the odds, redesigning processes to unlock lasting value from AI.

      詳細
      アドバンスド・アナリティクス
      A New Demand Forecasting Approach Signals a Bottom-Line Boost

      By improving its algorithm, a consumer health company saw better accuracy, less excess inventory, and fewer disappointed customers.

      詳細
      ヘルスケア
      Pharma oncology growth strategy

      Bain created a framework to help this pharmaceutical company optimize its portfolio to support the company's revenue goals.

      詳細
      First published in 5月 2025
      Tags
      • Artificial Intelligence
      • Artificial Intelligence Insights
      • Digital
      • アドバンスド・アナリティクス
      • ヘルスケア
      • 製薬

      クライアント支援事例

      業績改善 A Pharma Company’s Finance Function Gets a Shot in the Arm

      ケーススタディを見る

      戦略 Pharma oncology growth strategy

      ケーススタディを見る

      顧客戦略、マーケティング Recharging the pharmaceutical sales model

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      Digital is a service mark of Bain & Company, Inc.

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス