Skip to Content
  • オフィス

    オフィス

    北米・南米
    • Atlanta
    • Austin
    • Bogota
    • Boston
    • Buenos Aires
    • Chicago
    • Dallas
    • Denver
    • Houston
    • Los Angeles
    • Mexico City
    • Minneapolis
    • Monterrey
    • Montreal
    • New York
    • Rio de Janeiro
    • San Francisco
    • Santiago
    • São Paulo
    • Seattle
    • Silicon Valley
    • Toronto
    • Washington, DC
    ヨーロッパ・中東・アフリカ
    • Amsterdam
    • Athens
    • Berlin
    • Brussels
    • Copenhagen
    • Doha
    • Dubai
    • Dusseldorf
    • Frankfurt
    • Helsinki
    • Istanbul
    • Johannesburg
    • Kyiv
    • Lisbon
    • London
    • Madrid
    • Milan
    • Munich
    • Oslo
    • Paris
    • Riyadh
    • Rome
    • Stockholm
    • Vienna
    • Warsaw
    • Zurich
    アジア・オーストラリア
    • Bangkok
    • Beijing
    • Bengaluru
    • Brisbane
    • Ho Chi Minh City
    • Hong Kong
    • Jakarta
    • Kuala Lumpur
    • Manila
    • Melbourne
    • Mumbai
    • New Delhi
    • Perth
    • Shanghai
    • Singapore
    • Sydney
    • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語

    地域と言語を選択

    グローバル
    • Global (English)
    北米・南米
    • Brazil (Português)
    • Argentina (Español)
    • Canada (Français)
    • Chile (Español)
    • Colombia (Español)
    ヨーロッパ・中東・アフリカ
    • France (Français)
    • DACH Region (Deutsch)
    • Italy (Italiano)
    • Spain (Español)
    • Greece (Elliniká)
    アジア・オーストラリア
    • China (中文版)
    • Korea (한국어)
    • Japan (日本語)
  • Saved items (0)
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    メインメニュー

    業界別プラクティス

    • 航空宇宙、防衛、政府関連
    • 農業
    • 化学製品
    • インフラ、建設
    • 消費財
    • 金融サービス
    • ヘルスケア
    • 産業機械、設備
    • メディア、エンターテインメント
    • 金属
    • 採掘・鉱業
    • 石油、ガス
    • 紙、パッケージ
    • プライベートエクイティ
    • 公共、社会セクター
    • 小売
    • テクノロジー
    • 通信
    • 交通
    • 観光産業
    • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    メインメニュー

    機能別プラクティス

    • カスタマー・エクスペリエンス
    • サステイナビリティ、 社会貢献
    • Innovation
    • 企業買収、合併 (M&A)
    • オペレーション
    • 組織
    • プライベートエクイティ
    • マーケティング・営業
    • 戦略
    • アドバンスド・アナリティクス
    • Technology
    • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    メインメニュー

    ベイン・アンド・カンパニーについて

    • ベインの信条
    • 活動内容
    • 社員とリーダーシップ
    • プレス・メディア情報
    • クライアントの結果
    • 受賞歴
    • パートナーシップを結んでいる団体
    Further: Our global responsibility
    • ダイバーシティ
    • 社会貢献
    • サステイナビリティへの取り組み
    • 世界経済フォーラム(WEF)
    Learn more about Further
  • キャリア
    メインメニュー

    キャリア

    • ベインで働く
      キャリア
      ベインで働く
      • Find Your Place
      • ベインで活躍する機会
      • ベインのチーム体制
      • 学生向けページ
      • インターンシップ
      • 採用イベント
    • ベインでの体験
      キャリア
      ベインでの体験
      • キャリアストーリー
      • 社員紹介
      • Where We Work
      • 成長を後押しするサポート体制
      • アフィニティ・グループ
      • 福利厚生
    • Impact Stories
    • 採用情報
      キャリア
      採用情報
      • 採用プロセス
      • 面接内容
    FIND JOBS
  • オフィス
    メインメニュー

    オフィス

    • 北米・南米
      オフィス
      北米・南米
      • Atlanta
      • Austin
      • Bogota
      • Boston
      • Buenos Aires
      • Chicago
      • Dallas
      • Denver
      • Houston
      • Los Angeles
      • Mexico City
      • Minneapolis
      • Monterrey
      • Montreal
      • New York
      • Rio de Janeiro
      • San Francisco
      • Santiago
      • São Paulo
      • Seattle
      • Silicon Valley
      • Toronto
      • Washington, DC
    • ヨーロッパ・中東・アフリカ
      オフィス
      ヨーロッパ・中東・アフリカ
      • Amsterdam
      • Athens
      • Berlin
      • Brussels
      • Copenhagen
      • Doha
      • Dubai
      • Dusseldorf
      • Frankfurt
      • Helsinki
      • Istanbul
      • Johannesburg
      • Kyiv
      • Lisbon
      • London
      • Madrid
      • Milan
      • Munich
      • Oslo
      • Paris
      • Riyadh
      • Rome
      • Stockholm
      • Vienna
      • Warsaw
      • Zurich
    • アジア・オーストラリア
      オフィス
      アジア・オーストラリア
      • Bangkok
      • Beijing
      • Bengaluru
      • Brisbane
      • Ho Chi Minh City
      • Hong Kong
      • Jakarta
      • Kuala Lumpur
      • Manila
      • Melbourne
      • Mumbai
      • New Delhi
      • Perth
      • Shanghai
      • Singapore
      • Sydney
      • Tokyo
    全てのオフィス
  • アルムナイ
  • メディア
  • お問い合わせ
  • 東京オフィス
  • Japan | 日本語
    メインメニュー

    地域と言語を選択

    • グローバル
      地域と言語を選択
      グローバル
      • Global (English)
    • 北米・南米
      地域と言語を選択
      北米・南米
      • Brazil (Português)
      • Argentina (Español)
      • Canada (Français)
      • Chile (Español)
      • Colombia (Español)
    • ヨーロッパ・中東・アフリカ
      地域と言語を選択
      ヨーロッパ・中東・アフリカ
      • France (Français)
      • DACH Region (Deutsch)
      • Italy (Italiano)
      • Spain (Español)
      • Greece (Elliniká)
    • アジア・オーストラリア
      地域と言語を選択
      アジア・オーストラリア
      • China (中文版)
      • Korea (한국어)
      • Japan (日本語)
  • Saved items  (0)
    メインメニュー
    Saved items (0)

    You have no saved items.

    後で閲読、共有できるようにするためにブックマークしてください

    Explore Bain Insights
  • 業界別プラクティス
    • 業界別プラクティス

      • 航空宇宙、防衛、政府関連
      • 農業
      • 化学製品
      • インフラ、建設
      • 消費財
      • 金融サービス
      • ヘルスケア
      • 産業機械、設備
      • メディア、エンターテインメント
      • 金属
      • 採掘・鉱業
      • 石油、ガス
      • 紙、パッケージ
      • プライベートエクイティ
      • 公共、社会セクター
      • 小売
      • テクノロジー
      • 通信
      • 交通
      • 観光産業
      • 公益事業、再生可能エネルギー
  • 機能別プラクティス
    • 機能別プラクティス

      • カスタマー・エクスペリエンス
      • サステイナビリティ、 社会貢献
      • Innovation
      • 企業買収、合併 (M&A)
      • オペレーション
      • 組織
      • プライベートエクイティ
      • マーケティング・営業
      • 戦略
      • アドバンスド・アナリティクス
      • Technology
      • フルポテンシャル・トランスフォーメーション
  • Digital
  • 知見/レポート
  • ベイン・アンド・カンパニーについて
    • ベイン・アンド・カンパニーについて

      • ベインの信条
      • 活動内容
      • 社員とリーダーシップ
      • プレス・メディア情報
      • クライアントの結果
      • 受賞歴
      • パートナーシップを結んでいる団体
      Further: Our global responsibility
      • ダイバーシティ
      • 社会貢献
      • サステイナビリティへの取り組み
      • 世界経済フォーラム(WEF)
      Learn more about Further
  • キャリア
    人気検索キーワード
    • デジタル
    • 戦略
    前回の検索
      最近訪れたページ

      Content added to saved items

      Saved items (0)

      Removed from saved items

      Saved items (0)

      動画

      Autonomous Finance and the CFO's Next Frontier

      At the CNBC CFO Council Summit, Bain Partners Michael Heric and Steve Beam discussed how innovative CFOs are using AI to transform finance.

      著者:Michael Heric and Steve Beam

      動画

      Autonomous Finance and the CFO's Next Frontier
      en

      Read a transcript of the conversation below:

      Jen Rogers: All right, gentlemen. So Miriam also had this great analogy. She talks about how not everyone used electricity when it first came out. And we all fly in planes now because we have this framework that's all around them. And we have faith in it. So as we're at the beginning of this transformation, really, what are you finding? It's a learning curve, right, for people in finance to get their hands around AI? So when it comes to that what is the use case that you see?

      Michael Heric: Yeah, so I think the first thing I would say, Jen, is we say, AI's exciting for the future. I think the real question is, what can it do for us now? And I think the first thing I would say about AI in finance, in the finance function specifically, is AI is not one thing. There are different forms of AI. So from traditional machine learning, generative AI or agentic AI, each one's different levels of maturity. So first of all, within the finance function, many finance functions are already using AI in some form similar to what was mentioned before.

      So for example, if you take accounts payable and intelligent document processing where people are processing supplier invoices, most companies are using this solution with AI already embedded within it. Then the question becomes other use cases really around generative AI and AI agents, which is a bit newer. And I think there's a whole range of use cases that we could go into from financial planning and analysis all the way to, say, tax and treasury.

      A data point, for example, around forecasting about 20% or so of finance organizations are already using AI in forecasting as an example around revenue cost or cash flow as an example.

      Rogers: So, Steve, one of the issues is adoption, really, getting it out there. So when you've seen adoption and this start to take off, what has the transformation been like? Is it difficult? Is it easy? What are we looking at?

      Steve Beam: I think it's difficult. I think there's a bad track record in corporate finance of adopting new technology in general. I mean, you look at a lot of our clients, and I mean, honestly, your tech stacks are probably being utilized for finance at about 20% today. And so you introduce a new concept, you introduce a new approach, advanced analytics and AI. I think it's about being very specific and prescriptive about what you want it to do.

      And so there's successes when you say, OK, we're going to put guardrails on this. We're going to be very, very protective of what we want this agent to go out and do for us. And then you do see results. I think the flip side of that is you open up your doors and you release these agents into every element of your financials, and you're not really sure what they're going to come back with. And so it's hard to find those situations where you've got analysts and people on your team that say, oh, it did what I needed versus it generated a lot more questions.

      And I think that's the adoption piece.

      Rogers: So you're inside lots of companies and you talk to lots of CFOs. I'm sure you know, they're pretty risk averse. I'm going to say I think sometimes it's a little bit part of the DNA that's there. And just listening to that answer, there's a reason to possibly be risk averse. So how do you help CFOs navigate that?

      Heric: Yeah, no, I mean, it's totally understandable. I think also a lot of the things around AI, the technology has just not been as mature. So within finance functions, if it's sort of like, hey, I can use this generative AI copilot, none of the information's auditable. Have no idea where these numbers come from. Oh, by the way, generative AI doesn't really do math well, but I'm going to give it a shot. And I'm going to start replacing stuff that works with stuff that's really expensive. It's just kind of stupid.

      And to be honest with you, a lot of the early stage things around AI within finance didn't have a good return on investment. And if you look at the return on investment from basic copilots, for example, out there, the return has been pretty poor. The only thing CFOs get is kind of a bill. They don't actually see a lot of improvement. They don't see a smaller finance function as an example. So I think some of that, just like anything, creates a lot of concern around, is this real?

      And so I think it's really overcoming that. And so what we see with companies that we work with is just the ability to sort of overcome that. To overcome just like basic experiments to really use AI to modernize the entire finance function. Not just, hey, I have five random use cases here that seem kind of cool. I've got five people that use it. They tell me it's good. But it doesn't actually move the needle on finance overall. It's just like interesting experiments. And so where you see the big traction is when companies really fully modernize.

      Beam: It's a tool. It's an enabler more than anything else when used the right way. I would also say we keep coming back to this idea across industries that normally within corporate finance, as corporate finance goes on a transformation, about a third of the existing work should stop. Reports, KPIs, overproduction of materials, of insight, it's just a lot. About a third of the work is really, really primed for AI to help in terms of value stream mapping and process mining. And then the final third is technology, speeding up those cycles.

      We've had a client recently in consumer products, 180 countries, two weeks to do a forecast. They leaned the process, applied advanced analytics and AI. And they're doing it in an hour every week versus two weeks, every month with better accuracy in 180 countries. There are use cases, but a lot of times, you have to prune or release a lot of capacity so your teams can go and focus on the right stuff.

      Heric: I think also, Steve, one other thing to add right on that example is it wasn't just, I built an AI model, but actually fundamentally changed how the company did forecasting. Moving from bottom up, forecasting huge, manual production to more of a top down approach, where you use AI, and then the entire process around forecasting actually changes. And to drive that cultural change is really hard because one thing that inhibits adoption is, I use AI, but it's kind of on the side.

      And it's an interesting check, but it doesn't actually fundamentally change how work is done. You've got to do both to really get the full benefits of AI. And I think that's the example that—

      Beam: We have a flip side to that, which is another client that has 15,000 AI generated models, and they're budgeting, forecasting, and planning cycles for as long as ever.

       It can really, really help. But let's be specific on what you want it to go and do.

      Rogers: I've heard you say that it is also a draw for employees. You actually have to do it to retain people out there. As we're wrapping up, what is the exciting part of this that you are hearing from clients when you're in there implementing that you're not hearing other people talk about?

      Heric: Yeah. Well, I do think, you know, people are always worried about job loss and that sort of thing. But if you go into a finance department, let's say it's like FP&A, and you look at how much people spend their time on, for example, doing data queries, reprocessing data, putting in different formats. I mean, it could be anywhere from 60% to 80%. And if you go to those people, they're like, I want to do something cool and fun. AI is more exciting than like running another SQL query to, pull out a bunch of information to drop it into a spreadsheet.

      So they want to be energized. There was a study in mid-September from Anthropic and OpenAI where they shared all their information on how people are actually using those applications. If you look at Anthropic in particular around enterprise, you can drill down almost like every state and every role. And if you look down at accountants, you see widespread adoption. So what that says is, even though companies are saying you might not be able to use this technology, people are actually using it anyway and they're just using it with these consumer applications anyway.

      So I think that that's what they're looking for to be energized around AI.

      Rogers: All right, well, thanks for getting us a little bit excited about it.

      著者
      • Headshot of Michael Heric
        Michael Heric
        パートナー, New York
      • Headshot of Steve Beam
        Steve Beam
        パートナー, Atlanta
      関連するコンサルティングサービス
      • Automation
      • 業績改善
      コンサルティングサービス
      • Artificial Intelligence
      • Corporate Finance
      • Finance Function Advantage
      First published in 12月 2025
      Tags
      • Artificial Intelligence
      • Automation
      • CFO Insights
      • Corporate Finance
      • Finance Function Advantage
      • 業績改善

      クライアント支援事例

      業績改善 A Pharma Company’s Finance Function Gets a Shot in the Arm

      ケーススタディを見る

      業績改善 Strategic G&A approach cooks up savings

      ケーススタディを見る

      企業買収、合併(M&A) Finance transformation: For one company, second time’s the charm

      ケーススタディを見る

      お気軽にご連絡下さい

      私達は、グローバルに活躍する経営者が抱える最重要経営課題に対して、厳しい競争環境の中でも成長し続け、「結果」を出すために支援しています。

      ベインの知見。競争が激化するグローバルビジネス環境で、日々直面するであろう問題について論じている知見を毎月お届けします。

      *プライバシーポリシーの内容を確認し、合意しました。

      プライバシーポリシーをご確認頂き、合意頂けますようお願い致します。
      Bain & Company
      お問い合わせ Sustainability Accessibility Terms of use Privacy Cookie Policy Sitemap Log In

      © 1996-2026 Bain & Company, Inc.

      お問い合わせ

      How can we help you?

      • ビジネスについて
      • プレス報道について
      • 採用について
      全てのオフィス